Citation: WANG Hui, XI Yan-Yan, ZHOU Jian-Zhang, LIN Zhong-Hua. Electrochemical Synthesis of CdS Nanocrystals on a ld Electrode Modified with a p-Aminothiophenol Self-Assembled Monolayer[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1398-1404. doi: 10.3866/PKU.WHXB201204091 shu

Electrochemical Synthesis of CdS Nanocrystals on a ld Electrode Modified with a p-Aminothiophenol Self-Assembled Monolayer

  • Received Date: 15 December 2011
    Available Online: 9 April 2012

    Fund Project: 国家自然科学基金(21021002, 20973134)资助项目 (21021002, 20973134)

  • This work describes the electrochemical synthesis of cadmium sulfide (CdS) nanostructured films by applying a pulsed current technique on the ld electrode modified with a self-assembled p-aminothiophenol monolayer (PATP/Au). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the morphology and crystal phase of the synthesized samples. An ordered array of CdS nanorods with a relatively higher c-axis preferred orientation was found on the PATP/ Au substrate. The results indicated that the size of the CdS nanorods increased with the increase in the pulse width of the pulsed current, whereas the uniformity decreased. Furthermore, the size and coverage of the CdS nanorods increased with the increase in the pulse height. Thus, the morphology and size of the prepared CdS nanorods could be controlled by adjusting the pulse width and height. Cyclic voltammetry (CV) and chronopotentiometry were also applied to investigate the mechanism of the electrodeposition of CdS on PATP/Au. In accordance with the experimental results, we suggest that the interaction of the -NH2 in PATP molecules with Cd2+ in the solution may have contributed to the passing of electrons along the PATP chain following a modification of the p-aminothiophenol monolayer on the Au substrate. A formation mechanism for the electrochemically synthesized CdS nanorods on the PATP/Au substrate has consequently been proposed.
  • 加载中
    1. [1]

      (1) Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nano Lett. 2004, 4, 1981.

    2. [2]

      (2) Schlamp, M. C.; Peng, X. G.; Alivisatos, A. P. J. Appl. Phys. 1997, 82, 5837.

    3. [3]

      (3) Hirai, T.; Suzuki, K.; Komasawa, I. J. Colloid Interface Sci. 2001, 244, 262.

    4. [4]

      (4) Cui, H. N.; Xi, S. Q. Thin Solid Films 1996, 288, 325.

    5. [5]

      (5) Pan, A. L.; Liu, R. B.; Yang, Q.; Zhu, Y. C.; Yang, G. Z.; Zou, B. S.; Chen, K. Q. J. Phys. Chem. B 2005, 109, 24268.

    6. [6]

      (6) Zhai, T. Y.; Fang, X. S.; Bando, Y.; Liao, Q.; Xu, X. J.; Zeng, H. B.; Ma, Y.; Yao, J. N.; lberg, D. ACS Nano 2009, 3, 949.

    7. [7]

      (7) Cheng, Y.; Wang, Y. S.; Bao, F.; Chen, D. Q. J. Phys. Chem. B 2006, 110, 9448.

    8. [8]

      (8) Liang, Y. Q.; Zhen, C. G.; Zou, D. C.; Xu, D. S. J. Am. Chem. Soc. 2004, 126, 16338.  doi: 10.1021/ja044545v

    9. [9]

      (9) Wang, C. Z.; E, Y. F.; Fan, L. Z.; Wang, Z. H.; Liu, H. B.; Li, Y. L.; Yang, S. H.; Lin, Y. L. Adv. Mater. 2007, 19, 3677.  doi: 10.1002/adma.200701386

    10. [10]

      (10) Gao, T.; Wang, T. H. J. Phys. Chem. B 2004, 108, 20045.  doi: 10.1021/jp047519s

    11. [11]

      (11) Hernandez-Contreras, H.; Mejía-García, C.; Contreras-Puente, G. Thin Solid Films 2004, 451 -452, 203.

    12. [12]

      (12) Singh, V.; Singh, B. P.; Sharma, T. P.; Tyagi, R. C. Opt. Mater. 2002, 20, 171.  doi: 10.1016/S0925-3467(02)00043-5

    13. [13]

      (13) Uda, H.; Yonezawa, H.; Ohtsubo, Y.; Kosaka, M.; Sonomura, H. Sol. Energy Mater. Sol. Cells 2003, 75, 219.  doi: 10.1016/S0927-0248(02)00163-0

    14. [14]

      (14) Yu, S. H.; Wu, Y. S.; Yang, J.; Han, Z. H.; Xie, Y.; Qian, Y. T.; Liu, X. M. Chem. Mater. 1998, 10, 2309.  doi: 10.1021/cm980181s

    15. [15]

      (15) Romeo, N.; Bosio, A.; Tedeschi, R.; Canevari, V. Mater. Chem. Phys. 2000, 66, 201.  doi: 10.1016/S0254-0584(00)00316-3

    16. [16]

      (16) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26, 2927.]

    17. [17]

        doi: 10.3866/PKU.WHXB20101113

    18. [18]

      (17) Cao, W. L.; Zhang, K. H.; Zhang, J. C. Chin. J. Inorg. Chem. 2002, 18, 997. [曹维良, 张凯华, 张敬畅. 无机化学学报, 2002, 18, 997.]

    19. [19]

      (18) Xi, Y. Y.; Zhou, J. Z.; Zhang, Y.; Dong, P.; Cai, C. D.; Huang, H. G.; Lin, Z. H. Chem. J. Chin. Univ. 2004, 25, 2322. [席燕燕, 周剑章, 张彦, 董平, 蔡成东, 黄怀国, 林仲华. 高等化学学报, 2004, 25, 2322.]

    20. [20]

      (19) Karami, H.; Kaboli, A. Int. J. Electrochem. Sci. 2010, 5, 706.

    21. [21]

      (20) Lade, S. J.; Lokhande, C. D. Mater. Chem. Phys. 1997, 49, 160.  doi: 10.1016/S0254-0584(97)01881-6

    22. [22]

      (21) Kadirgan, F.; Mao, D. L.; Song, W. J.; Ohno, T.; McCandless, B. Turk. J. Chem. 2000, 24, 21.

    23. [23]

      (22) Zhang, X. J.; Zhao, Q. R.; Tian, Y. P.; Xie, Y. Cryst. Growth Des. 2004, 4, 355.  doi: 10.1021/cg0341555

    24. [24]

      (23) Huang, H. G.; Xi, Y. Y.; Zheng, Z. X.; Yan, J. W.; Zhou, J. Z.; Wu, L. L.; Lin, Z. H. Electrochemistry 2001, 8, 195. [黄怀国, 席燕燕, 郑志新, 颜佳伟, 周剑章, 吴玲玲, 林仲华. 电化学, 2001, 8, 195.]

    25. [25]

      (24) Zhang, H. P.; Luo, J.; Huang, H. G.; Wu, L. L.; Lin, Z. H. Chem. J. Chin. Univ. 1999, 20, 624. [张红平, 罗谨, 黄怀国, 吴玲玲, 林仲华. 高等学校化学学报, 1999, 20, 195.]

    26. [26]

      (25) Luo, J.; Zhang, H. P.; Huang, H. G.; Wu, L. L.; Lin, Z. H. Mol. Cryst. Liq. Cryst. 1999, 337, 157.  doi: 10.1080/10587259908023401

    27. [27]

      (26) Huang, H. G.; Zheng, Z. X.; Luo, J.; Zhang, H. P.; Wu, L. L.; Lin, Z. H. Synth. Met. 2001, 123, 321.  doi: 10.1016/S0379-6779(01)00298-3

    28. [28]

      (27) Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. J. Phys. Chem. 1996, 100, 14037.  doi: 10.1021/jp952910m

    29. [29]

      (28) Bicer, M.; Aydin, A. O.; Sisman, I. Electrochim. Acta 2010, 55, 3749.  doi: 10.1016/j.electacta.2010.02.015

    30. [30]

      (29) Baranski, A. S.; Fawcett, W. R. J. Electrochem. Soc. 1984, 131, 2509.  doi: 10.1149/1.2115349

    31. [31]

      (30) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4483.  doi: 10.1021/ja00351a064

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(690)
  • Abstract views(2323)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return