Citation: CHEN Zhong-Xiu, CAO Chen, DENG Shao-Ping. Chaotrope-Assisted Color Visualization Mechanism and Thermodynamics Involved in Molecular Recognition of Melamine by Bolaamphiphiles Embedded in Polydiacetylene Vesicles[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1320-1328. doi: 10.3866/PKU.WHXB201204064 shu

Chaotrope-Assisted Color Visualization Mechanism and Thermodynamics Involved in Molecular Recognition of Melamine by Bolaamphiphiles Embedded in Polydiacetylene Vesicles

  • Received Date: 28 January 2012
    Available Online: 6 April 2012

    Fund Project: 国家自然科学基金(20973155)资助项目 (20973155)

  • The interaction between melamine and 1,12-diaminododecanediorotate (DDO), a bolaamphiphile bearing molecular recognition sites for amine functional groups, was transformed into visible color changes using polymerized 2,4-tricosadiynoic acid (TCDA) vesicles. TCDA was found to be more sensitive than other polydiacetylene vesicles with various alkane chain-lengths in reporting the molecular recognition event. Colorimetric changes occurred as a result of modifications in the conjugated backbone of TCDA triggered by changes in the chemical environment associated with the recognition process. To better understand this mechanism, the influence of melamine on the thermotropic behavior of polydiacetylene vesicles and the thermodynamics were investigated via differential scanning calorimetry (DSC). It was found that the phase transitions of both TCDA and DDO/TCDA vesicles were shifted to higher temperatures when melamine was present, and that the magnitude of this shift increased as the melamine levels were raised. Color changes associated with the molecular recognition process were only observed with the unaided eye when melamine was introduced at levels well in excess of those theoretically required. Using sucrose and urea as model kosmotropic and chaotropic compounds, respectively, the effect of such solutes on the phase transition of polydiacetylene vesicles and equilibrium energetics of the molecular recognition were examined. Results indicate that the excess melamine likely behaves as a chaotrope in the colloid. In combination with the multipoint hydrogen bond formation between melamine and DDO, these effects are responsible for the blue-red color transition of the DDO/TCDA vesicles. Identification of this chaotrope-assisted color visualization mechanism for PDA vesicles provides new insights into the Hofmeister series effect on the conformation change of conjugated polymers.
  • 加载中
    1. [1]

      (1) Okada, S.; Peng, S.; Spevak, W.; Charych, D. Accounts Chem. Res. 1998, 31, 229.  doi: 10.1021/ar970063v

    2. [2]

      (2) Ahn, D. J.; Kim, J. M. Accounts Chem. Res. 2008, 41, 805.  doi: 10.1021/ar7002489

    3. [3]

      (3) Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D. Science 1993, 261, 585.  doi: 10.1126/science.8342021

    4. [4]

      (4) Ma, Z. F.; Li, J. R.; Liu, M. H.; Cao, J.; Zou, Z. Y.; Tu, J.; Jiang L. J. Am. Chem. Soc. 1998, 120, 12678.  doi: 10.1021/ja982663a

    5. [5]

      (5) Kolusheva, S.; Katz, R. K. M.; Jelinek, R. J. Am. Chem. Soc. 2001, 123, 417.  doi: 10.1021/ja0034139

    6. [6]

      (6) Jaworski, J.; Yokoyama, K.; Zueger, C.; Chung, W. J.; Lee, S. W.; Majumdar, A. Langmuir 2011, 27, 3180.  doi: 10.1021/la104476p

    7. [7]

      (7) Sigal-Batikoff, I.; Konovalov, O.; Singh, A.; Berman, A. Langmuir 2010, 26, 16424.  doi: 10.1021/la102166k

    8. [8]

      (8) Mittapalli, G. K.; Osornio, Y. M.; Guerrero, M. A.; Reddy, K. R.; Krishnamurthy, R.; Eschenmoser, A. Angew. Chem. Int. Edit. 2007, 46, 2478.  doi: 10.1002/anie.200603209

    9. [9]

      (9) Ma, M.; Bong, D. Langmuir 2011, 27, 8841 and references therein.

    10. [10]

      (10) Chen, Z. X.; Su, X. X.; Deng, S. P. J. Phys. Chem. B 2011, 115, 1798.  doi: 10.1021/jp106385x

    11. [11]

      (11) Potisatityuenyong, A.; Rojanathanes, R.; Tumcharern, G.; Sukwattanasinitt, M. Langmuir 2008, 24, 4461.  doi: 10.1021/la800354q

    12. [12]

      (12) Cheng, Q.; Stevens, R. C. Langmuir 1998, 14, 1974.  doi: 10.1021/la980185b

    13. [13]

      (13) Huo, Q.; Russell, K. C.; Leblanc, R. M. Langmuir 1999, 15, 3972.  doi: 10.1021/la990025f

    14. [14]

      (14) Song, J.; Cheng, Q.; Kopta, S.; Stevens, R. C. J. Am. Chem. Soc. 2001, 123, 3205.  doi: 10.1021/ja0035046

    15. [15]

      (15) Charoenthai, N.; Pattanatornchai, T.; Wacharasindhu, S.; Sukwattanasinitt, M.; Traiphol, R. J. Colloid Interface Sci. 2011, 360, 565.  doi: 10.1016/j.jcis.2011.04.109

    16. [16]

      (16) Kolusheva, S.; Wachtel, E.; Jelinek, R. J. Lipid Res. 2003, 44, 65.  doi: 10.1194/jlr.M200136-JLR200

    17. [17]

      (17) Pires, A. C. S.; Soares, N. F. F.; da Silva, L. H. M.; da Silva, M. C. H.; Mageste, A. B.; Soares, R. F.; Teixeira, A. V. N. C.; Andrade, N. J. J. Phys. Chem. B 2010, 114, 13365.  doi: 10.1021/jp105604t

    18. [18]

      (18) Pang, J.; Yang, L.; McCaughey, B. F.; Peng, H.; Ashbaugh, H. S.; Brinker, C. J.; Lu, Y. J. Phys. Chem. B 2006, 110, 7221.  doi: 10.1021/jp060309q

    19. [19]

      (19) Wang, X.; Sandman, D. J.; Chen, S.; Gido, S. P. Macromolecules 2008, 41, 773.  doi: 10.1021/ma070820x

    20. [20]

      (20) Ahn, D. J.; Chae, E. H.; Lee, G. S.; Shim, H. Y.; Chang, T. E.; Ahn, K. D.; Kim, J. M. J. Am. Chem. Soc. 2003, 125, 8976.  doi: 10.1021/ja0299001

    21. [21]

      (21) Wu, S.; Niu, L.; Shen, J.; Zhang, Q.; Bubeck, C. Macromolecules 2009, 42, 362.  doi: 10.1021/ma801709n

    22. [22]

      (22) Dunstan, D. E.; Hill, E. K.; Wei, Y. Macromolecules 2004, 37, 1663.  doi: 10.1021/ma030413v

    23. [23]

      (23) Su,Y. L.; Li, J. R.; Jiang, L.; Cao, J. J. Colloid Interface Sci. 2005, 284, 114.  doi: 10.1016/j.jcis.2004.10.003

    24. [24]

      (24) Zhong, L.; Jiao, T.; Liu, M. J. Phys. Chem. B 2009, 113, 8867.  doi: 10.1021/jp902822q

    25. [25]

      (25) Su, Y. L.; Li, J. R.; Jiang, L. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 257-258, 25.

    26. [26]

      (26) Chen, X.; Lee, J.; Jou, M. J.; Kim, J. M.; Yoon, J. Chem. Commun. 2009, 3434.

    27. [27]

      (27) Thongmalai, W.; Eaidkong, T.; Ampornpun, S.; Mungkarndee, R.; Tumcharern, G.; Sukwattanasinitt, M.; Wacharasindhu, S. J. Mater. Chem. 2011, 21, 16391.  doi: 10.1039/c1jm12795k

    28. [28]

      (28) Lee, J.; Jeong, E. J.; Kim, J. Chem. Commun. 2011, 47, 358.  doi: 10.1039/c0cc02183k

    29. [29]

      (29) Sturtevant, J. M. Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 3963.  doi: 10.1073/pnas.79.13.3963

    30. [30]

      (30) Mabrey-Gaud, S. Liposomes: From Physical Structure to Therapeutic Applications; Knight Ed.; Elsevier, North-Holland Biomedical Press: Amsterdam, 1981.

    31. [31]

      (31) Barenholz, Y.; Bombelli, C.; Bonicelli, M. G.; di Profio, P.; Giansanti, L.; Mancini, G.; Pascale, F. J. Colloid Interface Sci. 2011, 356, 46.  doi: 10.1016/j.jcis.2010.11.062

    32. [32]

      (32) Schild, H. G.; Tirrel, D. A. J. Phys. Chem. 1990, 94, 4352.  doi: 10.1021/j100373a088

    33. [33]

      (33) Otake, K.; Inomata, H.; Kono, M.; Saito, S. Macromolecules 1990, 23, 283.  doi: 10.1021/ma00203a049

    34. [34]

      (34) Vecchio, P. D.; Graziano, G.; Granata, V.; Barone, G.; Mandrich, L.; Manco, G.; Rossi, M. Biochemistry 2002, 41, 1364.  doi: 10.1021/bi011146t

    35. [35]

      (35) Das, A.; Mukhopadhyay, C. J. Phys. Chem. B 2009, 113, 12816.  doi: 10.1021/jp906350s

    36. [36]

      (36) Nozaki, Y.; Tanford, C. J. Biol. Chem. 1963, 238, 4074.

    37. [37]

      (37) Bianco, C. L.; Schneider, C. S.; Santonicola, M.; Lenhoff, A. M.; Kaler, E. W. Ind. Eng. Chem. Res. 2011, 50, 85.  doi: 10.1021/ie101011v

    38. [38]

      (38) Nostro, P. L.; Ninham, B. W.; Fratoni, L.; Palma, S.; Manzo, R. H.; Allemandi, D.; Baglioni, P. Langmuir 2003, 19, 3222.  doi: 10.1021/la026807h

    39. [39]

      (39) Yang, M.; Liu, C.; Li, Z.; Gao, G.; Liu, F. Macromolecules 2010, 43, 10645.  doi: 10.1021/ma1022555

    40. [40]

      (40) Ibarra-Molero, B.; Makhatadze, G. I.; Matthews, C. R. Biochemistry 2001, 40, 719.  doi: 10.1021/bi001438e

    41. [41]

      (41) Shechter, I.; Ramon, O.; Portnaya, I.; Paz, Y.; Livney, Y. D. Macromolecules 2010, 43, 480.

    42. [42]

      (42) Alexandridis, P.; Holzwarth, J. F. Langmuir 1997, 13, 6074.  doi: 10.1021/la9703712

    43. [43]

      (43) Jones, G.; Dole, M. J. Am. Chem. Soc. 1929, 51, 2950.  doi: 10.1021/ja01385a012

    44. [44]

      (44) Amar-Yuli, I.; Aserin, A.; Garti, N. J. Phys. Chem. B 2008, 112, 10171.  doi: 10.1021/jp802737k

  • 加载中
    1. [1]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(796)
  • Abstract views(1964)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return