Citation: ZHAO Gao-Feng, WANG Yin-Liang, SUN Jian-Min, WANG Yuan-Xu. Geometries, Stabilities and Electronic Properties of Au12M (M=Na, Mg, Al, Si, P, S, Cl) Clusters[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1355-1360. doi: 10.3866/PKU.WHXB201204063 shu

Geometries, Stabilities and Electronic Properties of Au12M (M=Na, Mg, Al, Si, P, S, Cl) Clusters

  • Received Date: 14 February 2012
    Available Online: 6 April 2012

    Fund Project: 国家自然科学基金(10804027, 11011140321) (10804027, 11011140321)河南省教育厅自然科学基金(2011A140003)资助项目 (2011A140003)

  • The geometries, stabilities, and electronic properties of Au12M (M=Na, Mg, Al, Si, P, S, Cl) clusters were systematically investigated by using first-principles calculations based on density functional theory (DFT). For each cluster, the average binding energy, the embedding energy, the vertical ionization potential, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the natural charge population analysis, and the natural bond orbital analysis (NBO) were calculated. The lowest-energy structures of Au12M (M=Na, Mg, Al) clusters are cages with M encapsulated in the center, while structures of Au12M (M=Si, P, S, Cl) clusters are pyramidal with M at the apex. The Au12S cluster, having the full closed-shells, is the most stable. Furthermore, from the natural population analysis, it follows that charges transfer from Au to M in all the clusters. The NBO and HOMO analyses reveal that hybridization occurs between the Au s-d orbitals and the M p orbitals.
  • 加载中
    1. [1]

      (1) Bulusu, S.; Li, X.; Wang, L. S.; Zeng, X. C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8326.  doi: 10.1073/pnas.0600637103

    2. [2]

      (2) Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Science 2003, 299, 864.  doi: 10.1126/science.1079879

    3. [3]

      (3) Fa, W.; Dong, J. M. J. Chem. Phys. 2006, 124, 114310.  doi: 10.1063/1.2179071

    4. [4]

      (4) Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Edit. 2004, 43, 2678.  doi: 10.1002/anie.200453986

    5. [5]

      (5) Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2005, 127, 3698.  doi: 10.1021/ja050435s

    6. [6]

      (6) Gu, X.; Bulusu, S.; Li, X.; Zeng, X. C.; Li, J.; ng, X. G.; Wang, L. S. J. Phys. Chem. C 2007, 111, 8228.  doi: 10.1021/jp071960b

    7. [7]

      (7) Huang, W.; Ji, M.; Dong, C. D.; Gu, X.; Wang, L. M.; ng, X. G.; Wang, L. S. ACS Nano 2008, 2, 897.  doi: 10.1021/nn800074b

    8. [8]

      (8) Dong, C. D.; ng, X. G. J. Chem. Phys. 2010, 132, 104301.  doi: 10.1063/1.3324961

    9. [9]

      (9) Scherbaum, F.; Grohmann, A.; Huber, B.; KruGer, C.; Schmidbaur, H. Angew. Chem. 1988, 100, 1602.  doi: 10.1002/ange.19881001130

    10. [10]

      (10) Pyykko, P. Chem. Rev. 1988, 88, 563.  doi: 10.1021/cr00085a006

    11. [11]

      (11) Wang, S. Y.; Yu, J. Z.; Mizuseki, H.; Sun, Q.; Wang, C. Y.; Kawazoe, Y. Phys. Rev. B 2004, 70, 165413.  doi: 10.1103/PhysRevB.70.165413

    12. [12]

      (12) Hakkinen, H.; Moseler, M.; Kostko, O.; Morgner, N.; Hoffmann, M. A.; Issendorff, B. V. Phys. Rev. Lett 2004, 93, 093401.  doi: 10.1103/PhysRevLett.93.093401

    13. [13]

      (13) Yu, Y. J.; Wang, H. Y.; Yang, C. L.; Chen, J. N. Acta Phys. -Chim. Sin. 2011, 27, 808. [于永江, 王华阳, 杨传路, 陈建农. 物理化学学报, 2011, 27, 808.]

    14. [14]

      (14) Qian, H. F.; Barry, E.; Zhu, Y.; Jin, R. C. Acta Phys. -Chim. Sin. 2011, 27, 513.

    15. [15]

      (15) Liang, W. H.; Wang, X. L.; Ding, X. C.; Chu, L. Z.; Deng, Z. C.; Fu, G. S.; Wang, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1615. [梁伟华, 王秀丽, 丁学成, 禇立志, 邓泽超, 傅广生, 王英龙. 物理化学学报, 2011, 27, 1615.]

    16. [16]

      (16) Pykko, P.; Runeberg,  Angew. Chem. 2002, 114, 2278.  doi: 10.1002/1521-3757(20020617)114:12<2278::AID-ANGE2278>3.0.CO;2-F

    17. [17]

      (17) Li, X.; Kiran, B.; Li, H.; Zhai, H. J.; Wang, L. S. Angew. Chem. Int. Edit. 2002, 41, 4786.  doi: 10.1002/anie.200290048

    18. [18]

      (18) Chen, M. X.; Yan, X. H. J Chem Phys 2008, 128, 174305.  doi: 10.1063/1.2916588

    19. [19]

      (19) Heinebrodt, M.; Malinowski, N.; Tast, F.; Branz, W.; Billas, I. M. L.; Martin, T. P. J Chem Phys 1996, 110, 9915.

    20. [20]

      (20) Huang, W.; Wang, L. S. Phys. Rev. Lett. 2009, 102, 153401.  doi: 10.1103/PhysRevLett.102.153401

    21. [21]

      (21) Wang, L. M.; Pal, R.; Huang, W.; Zeng, X. C.; Wang, L. S. J. Chem. Phys. 2010, 132, 114306.  doi: 10.1063/1.3356046

    22. [22]

      (22) Ferrighi, L.; Hammer, B.; Madsen, G. K. H. J. Am. Chem. Soc. 2009, 131, 10605.  doi: 10.1021/ja903069x

    23. [23]

      (23) Zhang, M.; He, L. M.; Zhao, L. X.; Feng, X. J.; Luo, Y. H. J. Phys. Chem. C 2009, 113, 6491.  doi: 10.1021/jp811103u

    24. [24]

      (24) Majumder, C. K., A. K.; Jena, P. Phys. Rev. B 2006, 74, 205437.  doi: 10.1103/PhysRevB.74.205437

    25. [25]

      (25) Zhang, M.; Chen, S.; Deng, Q. M.; He, L. M.; Zhao, L. N.; Luo, Y. H. Eur. Phys. J. D 2010, 58, 117.  doi: 10.1140/epjd/e2010-00040-9

    26. [26]

      (26) Long, J.; Qiu, Y. X.; Chen, X. Y.; Wang, S. G. J. Phys. Chem. C 2008, 112, 12646.  doi: 10.1021/jp8033006

    27. [27]

      (27) Zhai, H. J.; Li, J.; Wang, L. S. J. Chem. Phys. 2004, 121, 17.

    28. [28]

      (28) Gao, Y.; Bulusu, S.; Zeng, X. C. ChemPhysChem 2006, 7, 2275.  doi: 10.1002/cphc.200600472

    29. [29]

      (29) Li, X.; Kiran, B.; Cui, L. F.; Wang, L. S. Phys. Rev. Lett. 2005, 95, 253401.  doi: 10.1103/PhysRevLett.95.253401

    30. [30]

      (30) Yang, A.; Fa, W.; Dong, J. M. J Phys Chem A 2010, 114, 4031.  doi: 10.1021/jp908511m

    31. [31]

      (31) Sun, Q.; WANg, Q.; Jena, P.; Kawazoe, Y. ACS NANO 2008, 2, 341.  doi: 10.1021/nn7002647

    32. [32]

      (32) Wang, L. M.; Bai, J.; Lechtken, A.; Huang, W.; Schooss, D.; Kappes, M. M.; Zeng, X. C.; Wang, L. S. Phys. Rev. B 2009, 79, 033413.  doi: 10.1103/PhysRevB.79.033413

    33. [33]

      (33) Neukermans, S.; Janssens, E.; Tanaka, H.; Silverans, R. E.; Lievens, P. Phys. Rev. Lett. 2003, 90, 3.

    34. [34]

      (34) Walter, M.; Hakkinen, H. Phys. Chem. Chem. Phys. 2006, 8, 5407.

    35. [35]

      (35) Autschbach, J.; Hess, B. A.; Johansson, M. P.; Neugebauer, J.; Patzschke, M.; Pyykko, P.; Reiher, M.; Sundholm, D. Phys. Chem. Chem. Phys. 2004, 6, 11.

    36. [36]

      (36) Zhao, L. X.; Cao, T. T.; Feng, X. J.; Liang, X.; Lei, Y. M.; Luo, Y. H. J. Mol. Struc.-Theochem 2009, 895, 92.  doi: 10.1016/j.theochem.2008.10.032

    37. [37]

      (37) Graciela, B. P.; Ignacio, L. G. J. Mol. Struc.-Theochem 2002, 619, 79.  doi: 10.1016/S0166-1280(02)00548-1

    38. [38]

      (38) Banerjee, A.; Ghanty, T. K.; Chakrabarti, A.; Kamal, C. J. Phys. Chem. C 2012, 116, 193.  doi: 10.1021/jp207707e

    39. [39]

      (39) Chen, D. D.; Kuang, X. Y.; Zhao, Y. R. Chin. Phys. B 2011, 20, 027103.  doi: 10.1088/1674-1056/20/2/027103

    40. [40]

      (40) Li, Y. F.; Kuang, X. Y.; Wang, S. J. J. Phys. Chem. A 2010, 114, 11691.  doi: 10.1021/jp104206m

    41. [41]

      (41) Jayasekharan, T.; Ghanty, T. K. J. Phys. Chem. C 2010, 114, 8787.  doi: 10.1021/jp100705z

    42. [42]

      (42) Zhao, L. X.; Feng, X. J.; Cao, T. T.; Liang, X.; Luo, Y. H. Chin. Phys. B 2009, 18, 2709.  doi: 10.1088/1674-1056/18/7/014

    43. [43]

      (43) Becke, A. D. J. Chem. Phys. 1986, 84, 4524.  doi: 10.1063/1.450025

    44. [44]

      (44) Becke, A. D. J. Chem. Phys. 1988, 88, 2547.  doi: 10.1063/1.454033

    45. [45]

      (45) Becke, A. D. J. Chem. Phys. 1988, 88, 1053.  doi: 10.1063/1.454274

    46. [46]

      (46) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    47. [47]

      (47) Becke, A. D. J. Chem. Phys. 1993, 98, 5468.

    48. [48]

      (48) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.

    49. [49]

      (49) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.  doi: 10.1063/1.448799

    50. [50]

      (50) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.  doi: 10.1063/1.448975

    51. [51]

      (51) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  doi: 10.1063/1.448800

    52. [52]

      (52) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.

    53. [53]

      (53) Zhao, G. F.; Zeng, Z. J. Chem. Phys. 2006, 125, 014303.  doi: 10.1063/1.2210470

    54. [54]

      (54) Morse, M. D. Chem. Rev. 1986, 86, 1049.  doi: 10.1021/cr00076a005

    55. [55]

      (55) Negishi, Y.; Nakamura, Y.; Nakajima, A.; Kaya, K. J. Chem. Phys. 2001, 115, 3657.  doi: 10.1063/1.1388036

    56. [56]

      (56) Simard, B.; Hackett, P. A. J. Mol. Spectrose. 1990, 142, 310.  doi: 10.1016/0022-2852(90)90185-S

    57. [57]

      (57) Gingerich, K. A.; Blue, G. D. J. Chem. Phys. 1973, 59, 185.  doi: 10.1063/1.1679790

    58. [58]

      (58) Ho, J.; Ervin, K.; Lineberger, W. J. Chem. Phys. 1990, 93, 6987.  doi: 10.1063/1.459475

    59. [59]

      (59) Taylor, K.; Pettitte-Hall, C.; Cheshnovsky, O.; Smalley, R. J. Chem. Phys. 1992, 96, 3319.  doi: 10.1063/1.461927

    60. [60]

      (60) Tomlman, C. A. Chem. Soc. Rev. 1972, 1, 337.  doi: 10.1039/cs9720100337

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    16. [16]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

Metrics
  • PDF Downloads(1173)
  • Abstract views(3539)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return