Citation:
ZHAO Gao-Feng, WANG Yin-Liang, SUN Jian-Min, WANG Yuan-Xu. Geometries, Stabilities and Electronic Properties of Au12M (M=Na, Mg, Al, Si, P, S, Cl) Clusters[J]. Acta Physico-Chimica Sinica,
;2012, 28(06): 1355-1360.
doi:
10.3866/PKU.WHXB201204063
-
The geometries, stabilities, and electronic properties of Au12M (M=Na, Mg, Al, Si, P, S, Cl) clusters were systematically investigated by using first-principles calculations based on density functional theory (DFT). For each cluster, the average binding energy, the embedding energy, the vertical ionization potential, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the natural charge population analysis, and the natural bond orbital analysis (NBO) were calculated. The lowest-energy structures of Au12M (M=Na, Mg, Al) clusters are cages with M encapsulated in the center, while structures of Au12M (M=Si, P, S, Cl) clusters are pyramidal with M at the apex. The Au12S cluster, having the full closed-shells, is the most stable. Furthermore, from the natural population analysis, it follows that charges transfer from Au to M in all the clusters. The NBO and HOMO analyses reveal that hybridization occurs between the Au s-d orbitals and the M p orbitals.
-
-
-
[1]
(1) Bulusu, S.; Li, X.; Wang, L. S.; Zeng, X. C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8326. doi: 10.1073/pnas.0600637103
-
[2]
(2) Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Science 2003, 299, 864. doi: 10.1126/science.1079879
-
[3]
(3) Fa, W.; Dong, J. M. J. Chem. Phys. 2006, 124, 114310. doi: 10.1063/1.2179071
-
[4]
(4) Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Edit. 2004, 43, 2678. doi: 10.1002/anie.200453986
-
[5]
(5) Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2005, 127, 3698. doi: 10.1021/ja050435s
-
[6]
(6) Gu, X.; Bulusu, S.; Li, X.; Zeng, X. C.; Li, J.; ng, X. G.; Wang, L. S. J. Phys. Chem. C 2007, 111, 8228. doi: 10.1021/jp071960b
-
[7]
(7) Huang, W.; Ji, M.; Dong, C. D.; Gu, X.; Wang, L. M.; ng, X. G.; Wang, L. S. ACS Nano 2008, 2, 897. doi: 10.1021/nn800074b
-
[8]
(8) Dong, C. D.; ng, X. G. J. Chem. Phys. 2010, 132, 104301. doi: 10.1063/1.3324961
-
[9]
(9) Scherbaum, F.; Grohmann, A.; Huber, B.; KruGer, C.; Schmidbaur, H. Angew. Chem. 1988, 100, 1602. doi: 10.1002/ange.19881001130
-
[10]
(10) Pyykko, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006
-
[11]
(11) Wang, S. Y.; Yu, J. Z.; Mizuseki, H.; Sun, Q.; Wang, C. Y.; Kawazoe, Y. Phys. Rev. B 2004, 70, 165413. doi: 10.1103/PhysRevB.70.165413
-
[12]
(12) Hakkinen, H.; Moseler, M.; Kostko, O.; Morgner, N.; Hoffmann, M. A.; Issendorff, B. V. Phys. Rev. Lett 2004, 93, 093401. doi: 10.1103/PhysRevLett.93.093401
-
[13]
(13) Yu, Y. J.; Wang, H. Y.; Yang, C. L.; Chen, J. N. Acta Phys. -Chim. Sin. 2011, 27, 808. [于永江, 王华阳, 杨传路, 陈建农. 物理化学学报, 2011, 27, 808.]
-
[14]
(14) Qian, H. F.; Barry, E.; Zhu, Y.; Jin, R. C. Acta Phys. -Chim. Sin. 2011, 27, 513.
-
[15]
(15) Liang, W. H.; Wang, X. L.; Ding, X. C.; Chu, L. Z.; Deng, Z. C.; Fu, G. S.; Wang, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1615. [梁伟华, 王秀丽, 丁学成, 禇立志, 邓泽超, 傅广生, 王英龙. 物理化学学报, 2011, 27, 1615.]
-
[16]
(16) Pykko, P.; Runeberg, Angew. Chem. 2002, 114, 2278. doi: 10.1002/1521-3757(20020617)114:12<2278::AID-ANGE2278>3.0.CO;2-F
-
[17]
(17) Li, X.; Kiran, B.; Li, H.; Zhai, H. J.; Wang, L. S. Angew. Chem. Int. Edit. 2002, 41, 4786. doi: 10.1002/anie.200290048
-
[18]
(18) Chen, M. X.; Yan, X. H. J Chem Phys 2008, 128, 174305. doi: 10.1063/1.2916588
-
[19]
(19) Heinebrodt, M.; Malinowski, N.; Tast, F.; Branz, W.; Billas, I. M. L.; Martin, T. P. J Chem Phys 1996, 110, 9915.
-
[20]
(20) Huang, W.; Wang, L. S. Phys. Rev. Lett. 2009, 102, 153401. doi: 10.1103/PhysRevLett.102.153401
-
[21]
(21) Wang, L. M.; Pal, R.; Huang, W.; Zeng, X. C.; Wang, L. S. J. Chem. Phys. 2010, 132, 114306. doi: 10.1063/1.3356046
-
[22]
(22) Ferrighi, L.; Hammer, B.; Madsen, G. K. H. J. Am. Chem. Soc. 2009, 131, 10605. doi: 10.1021/ja903069x
-
[23]
(23) Zhang, M.; He, L. M.; Zhao, L. X.; Feng, X. J.; Luo, Y. H. J. Phys. Chem. C 2009, 113, 6491. doi: 10.1021/jp811103u
-
[24]
(24) Majumder, C. K., A. K.; Jena, P. Phys. Rev. B 2006, 74, 205437. doi: 10.1103/PhysRevB.74.205437
-
[25]
(25) Zhang, M.; Chen, S.; Deng, Q. M.; He, L. M.; Zhao, L. N.; Luo, Y. H. Eur. Phys. J. D 2010, 58, 117. doi: 10.1140/epjd/e2010-00040-9
-
[26]
(26) Long, J.; Qiu, Y. X.; Chen, X. Y.; Wang, S. G. J. Phys. Chem. C 2008, 112, 12646. doi: 10.1021/jp8033006
-
[27]
(27) Zhai, H. J.; Li, J.; Wang, L. S. J. Chem. Phys. 2004, 121, 17.
-
[28]
(28) Gao, Y.; Bulusu, S.; Zeng, X. C. ChemPhysChem 2006, 7, 2275. doi: 10.1002/cphc.200600472
-
[29]
(29) Li, X.; Kiran, B.; Cui, L. F.; Wang, L. S. Phys. Rev. Lett. 2005, 95, 253401. doi: 10.1103/PhysRevLett.95.253401
-
[30]
(30) Yang, A.; Fa, W.; Dong, J. M. J Phys Chem A 2010, 114, 4031. doi: 10.1021/jp908511m
-
[31]
(31) Sun, Q.; WANg, Q.; Jena, P.; Kawazoe, Y. ACS NANO 2008, 2, 341. doi: 10.1021/nn7002647
-
[32]
(32) Wang, L. M.; Bai, J.; Lechtken, A.; Huang, W.; Schooss, D.; Kappes, M. M.; Zeng, X. C.; Wang, L. S. Phys. Rev. B 2009, 79, 033413. doi: 10.1103/PhysRevB.79.033413
-
[33]
(33) Neukermans, S.; Janssens, E.; Tanaka, H.; Silverans, R. E.; Lievens, P. Phys. Rev. Lett. 2003, 90, 3.
-
[34]
(34) Walter, M.; Hakkinen, H. Phys. Chem. Chem. Phys. 2006, 8, 5407.
-
[35]
(35) Autschbach, J.; Hess, B. A.; Johansson, M. P.; Neugebauer, J.; Patzschke, M.; Pyykko, P.; Reiher, M.; Sundholm, D. Phys. Chem. Chem. Phys. 2004, 6, 11.
-
[36]
(36) Zhao, L. X.; Cao, T. T.; Feng, X. J.; Liang, X.; Lei, Y. M.; Luo, Y. H. J. Mol. Struc.-Theochem 2009, 895, 92. doi: 10.1016/j.theochem.2008.10.032
-
[37]
(37) Graciela, B. P.; Ignacio, L. G. J. Mol. Struc.-Theochem 2002, 619, 79. doi: 10.1016/S0166-1280(02)00548-1
-
[38]
(38) Banerjee, A.; Ghanty, T. K.; Chakrabarti, A.; Kamal, C. J. Phys. Chem. C 2012, 116, 193. doi: 10.1021/jp207707e
-
[39]
(39) Chen, D. D.; Kuang, X. Y.; Zhao, Y. R. Chin. Phys. B 2011, 20, 027103. doi: 10.1088/1674-1056/20/2/027103
-
[40]
(40) Li, Y. F.; Kuang, X. Y.; Wang, S. J. J. Phys. Chem. A 2010, 114, 11691. doi: 10.1021/jp104206m
-
[41]
(41) Jayasekharan, T.; Ghanty, T. K. J. Phys. Chem. C 2010, 114, 8787. doi: 10.1021/jp100705z
-
[42]
(42) Zhao, L. X.; Feng, X. J.; Cao, T. T.; Liang, X.; Luo, Y. H. Chin. Phys. B 2009, 18, 2709. doi: 10.1088/1674-1056/18/7/014
-
[43]
(43) Becke, A. D. J. Chem. Phys. 1986, 84, 4524. doi: 10.1063/1.450025
-
[44]
(44) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033
-
[45]
(45) Becke, A. D. J. Chem. Phys. 1988, 88, 1053. doi: 10.1063/1.454274
-
[46]
(46) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[47]
(47) Becke, A. D. J. Chem. Phys. 1993, 98, 5468.
-
[48]
(48) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
-
[49]
(49) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799
-
[50]
(50) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975
-
[51]
(51) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. doi: 10.1063/1.448800
-
[52]
(52) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[53]
(53) Zhao, G. F.; Zeng, Z. J. Chem. Phys. 2006, 125, 014303. doi: 10.1063/1.2210470
-
[54]
(54) Morse, M. D. Chem. Rev. 1986, 86, 1049. doi: 10.1021/cr00076a005
-
[55]
(55) Negishi, Y.; Nakamura, Y.; Nakajima, A.; Kaya, K. J. Chem. Phys. 2001, 115, 3657. doi: 10.1063/1.1388036
-
[56]
(56) Simard, B.; Hackett, P. A. J. Mol. Spectrose. 1990, 142, 310. doi: 10.1016/0022-2852(90)90185-S
-
[57]
(57) Gingerich, K. A.; Blue, G. D. J. Chem. Phys. 1973, 59, 185. doi: 10.1063/1.1679790
-
[58]
(58) Ho, J.; Ervin, K.; Lineberger, W. J. Chem. Phys. 1990, 93, 6987. doi: 10.1063/1.459475
-
[59]
(59) Taylor, K.; Pettitte-Hall, C.; Cheshnovsky, O.; Smalley, R. J. Chem. Phys. 1992, 96, 3319. doi: 10.1063/1.461927
-
[60]
(60) Tomlman, C. A. Chem. Soc. Rev. 1972, 1, 337. doi: 10.1039/cs9720100337
-
[1]
-
-
-
[1]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[2]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[3]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[4]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[5]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[6]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[7]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[8]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[9]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[10]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[11]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[12]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[13]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[14]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[15]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[16]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[17]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[18]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[19]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[20]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[1]
Metrics
- PDF Downloads(1173)
- Abstract views(3539)
- HTML views(11)