Citation: LI Dan, LIANG Ran, YUE He, WANG Peng, FU Li-Min, ZHANG Jian-Ping, AI Xi-Cheng. Influence of Donor and Acceptor Mass Ratios on P3HT:PCBM Film Structure and Device Performance[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1373-1379. doi: 10.3866/PKU.WHXB201204061 shu

Influence of Donor and Acceptor Mass Ratios on P3HT:PCBM Film Structure and Device Performance

  • Received Date: 24 February 2012
    Available Online: 6 April 2012

    Fund Project: 国家自然科学基金(20933010, 21173266, 21133001) (20933010, 21173266, 21133001)国家重点基础研究项目(973) (2009CB20008)资助 (973) (2009CB20008)

  • Organic bulk heterojunction photovoltaic devices based on poly(3-hexylthiophene) (P3HT, donor) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM, acceptor) were fabricated using solvent annealing treatment. The nanoscale morphology and structure of the P3HT:PCBM blend films were characterized by UV-Vis absorption spectroscopy (UV-Vis), atomic force microscopy (AFM), and X-ray diffraction (XRD) analyses. In addition, the AFM images were processed using the entropyfilt method. The performances of the P3HT:PCBM devices with different mass ratios were measured, having a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/P3HT:PCBM/aluminium (Al). The results showed that the crystallinity of the P3HT polymer can be disturbed by the relative amount of PCBM molecules. The 1:1 (mass ratio) blend film possessed the greatest absorption width by UV-Vis absorption, as well as od phase separation and a high level of crystallinity, providing the best device performance (2.77%). This study indicates that the donor and acceptor mass ratios do have an influence on the nanoscale morphology and structure of the blend films, which can in turn affect the device performance.
  • 加载中
    1. [1]

      (1) Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649.  doi: 10.1038/nphoton.2009.192

    2. [2]

      (2) Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y. G.; Pouliot, J. R.; Wakim, S.; Zhou, J. Y.; Leclerc, M.; Li, Z.; Ding, J. F.; Tao, Y. J. Am. Chem. Soc. 2011, 133, 4250.  doi: 10.1021/ja200314m

    3. [3]

      (3) Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J. Am. Chem. Soc. 2011, 133, 4625.  doi: 10.1021/ja1112595

    4. [4]

      (4) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.  doi: 10.1038/nmat1500

    5. [5]

      (5) Yao, Y.; Hou, J. H.; Xu, Z.; Li, G.; Yang, Y. Adv. Funct. Mater. 2008, 18, 1783.  doi: 10.1002/adfm.200701459

    6. [6]

      (6) Hsieh, C. H.; Cheng, Y. J.; Li, P. J.; Chen, C. H.; Dubosc, M.; Liang, R. M.; Hsu, C. S.; J. Am. Chem. Soc. 2010, 132, 4887.  doi: 10.1021/ja100236b

    7. [7]

      (7) Zhang, F. J.; Xu, X. W.; Tang, W. H.; Zhang, J.; Zhuo, Z. L.; Wang, J.; Wang, J.; Xu, Z.; Wang, Y. S. Solar Energy Materials & Solar Cells 2011, 95, 1785.  doi: 10.1016/j.solmat.2011.02.002

    8. [8]

      (8) Dou, L. T. ; You, J. B.; Yang J.; Chen, C. C.; He, Y. J.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Nat. Photonics 2012, 6, 180.  doi: 10.1038/nphoton.2011.356

    9. [9]

      (9) He, Z. C.; Zhong, C. M.; Huang, X.; Wong, W. Y.; Wu, H. B.; Chen, L. W.; Su, S. J.; Cao, Y. Adv. Mater. 2011, 23, 4636.  doi: 10.1002/adma.201103006

    10. [10]

      (10) Ma, W. L.; Yang, C. Y.; ng, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617.  doi: 10.1002/adfm.200500211

    11. [11]

      (11) Shrotriya, V.; Ouyang, J. Y.; Tseng, R. J.; Li, G.; Yang, Y. Chem. Phys. Lett. 2005, 411, 138.  doi: 10.1016/j.cplett.2005.06.027

    12. [12]

      (12) Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C. Adv. Mater. 2009, 21, 1521.  doi: 10.1002/adma.200802559

    13. [13]

      (13) Chen, F. C.; Tseng, H. C.; Ko, C. J. Appl. Phys. Lett. 2008, 92, 103316.  doi: 10.1063/1.2898153

    14. [14]

      (14) Zhang, F. L.; Jespersen, K.G.; Björström, C.; Sversson, M.; Andersson, M. R.; Sundström, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganäs, O. Adv. Funct. Mater. 2006, 16, 667.  doi: 10.1002/adfm.200500339

    15. [15]

      (15) Shaheen, S. E.; Brabec, C.J.; Sariciftci, N.S; Padinger, F.; Fromherz, T. Appl. Phys. Lett. 2001, 78, 841.  doi: 10.1063/1.1345834

    16. [16]

      (16) Liang, L. Z.; Wu, Y.; Shi, J. L. Chem. J. Chin. Univ. 2011, 32, 1661. [梁立志, 吴英, 石景龙. 高等学校化学学报, 2011, 32, 1661. ]

    17. [17]

      (17) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.  doi: 10.1002/adfm.200390011

    18. [18]

      (18) Zhuo, Z. L.; Zhang, F. J.; Xu, X. W.; Wang, J.; Lu, L. F.; Xu, Z. Acta Phys.-Chim. Sin. 2011, 27, 875. [卓祖亮, 张福俊, 许晓伟, 王健, 卢丽芳, 徐征. 物理化学学报, 2011, 26, 875.]

    19. [19]

        doi: 10.3866/PKU.WHXB20110414

    20. [20]

      (19) Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. J. Appl. Phys. 2005, 98, 043704.  doi: 10.1063/1.2008386

    21. [21]

      (20) Kekuda, D.; Huang, J. H.; Ho, K. C.; Chu, C. W. J. Phys. Chem. C. 2010, 114, 2764.  doi: 10.1021/jp910023d

    22. [22]

      (21) Li, G.; Yao, Y.; Yang, H. C.; Shrotriya, V.; Yang, G. W.; Yang, Y. Adv. Funct. Mater. 2007, 17, 1636.  doi: 10.1002/adfm.200600624

    23. [23]

      (22) Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nano. Lett. 2005, 5, 579.  doi: 10.1021/nl048120i

    24. [24]

      (23) Shrotriya, V.; Yao, Y.; Li, G.; Yang, Y. Appl. Phys. Lett. 2006, 89, 063505.  doi: 10.1063/1.2335377

    25. [25]

      (24) Xu, M.; Peng, J. B. Acta Physica Sinica 2010, 59, 2131. [徐苗, 彭俊彪. 物理学报, 2010, 59, 2131.]

    26. [26]

      (25) nzalez, R. C.; Woods, R. E.; Eddins, S. L. Digital Image Processing using Matlab; Pearson Prentice Hall: New Jersey, 2003; Chapter 11.

    27. [27]

      (26) Chen, T. A.; Wu, X. M.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.  doi: 10.1021/ja00106a027

    28. [28]

      (27) Huang, J. S.; Li, G.; Yang, Y. Appl. Phys. Lett. 2005, 87, 112105.  doi: 10.1063/1.2045554

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    10. [10]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(1419)
  • Abstract views(3116)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return