Citation: WEN Fei, ZHONG Bei-Jing. Skeletal Mechanism Generation Based on Eigenvalue Analysis Method[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1306-1312. doi: 10.3866/PKU.WHXB201204012 shu

Skeletal Mechanism Generation Based on Eigenvalue Analysis Method

  • Received Date: 22 November 2011
    Available Online: 1 April 2012

    Fund Project: 国家自然科学基金(51036004)资助项目 (51036004)

  • A new eigenvalue analysis-based method is presented for the construction of skeletal reduced mechanisms from complex chemical reaction mechanisms. A reduced mechanism of 21 species and 83 elementary reactions for methane-air combustion was generated from detailed mechanism GRI1.2. The ignition delay time, obtained for different values of equivalence ratio, initial temperature and pressure on the basis of this reduced mechanism, were compared with those based on the detailed mechanism GRI1.2, and another skeletal mechanism DRM19. The reduced mechanism agreed favorably with the detailed model, and performed more accurately than DRM19. Two reduced mechanisms, the first involving 120 reactions among 26 species, the second, 140 reactions among 30 species, were also generated from GRI3.0. They were tested by means of premixed laminar flame calculations. The method very accurately predicted speed of flame propagation and key species concentration and even NO concentration distribution in methane combustion.
  • 加载中
    1. [1]

      (1) Bykov, V.; Maas, U. Proc. Combust. Inst. 2007, 31(1), 465.

    2. [2]

      (2)Xu, X.G.; Xu, M.H.; Qiao, Y. Coal Conversion. 2004, 27(4), 1.[徐晓光,徐明厚,乔瑜. 煤炭转化, 2004, 27(4), 1.]

    3. [3]

      (3)Dunker, A.M. Int. J. Chem. Phys. 1984, 81, 2385.

    4. [4]

      (4) Turanyi T.; Berces T.; Vajda S. Int. J. Chem. Kinet. 1989, 21,83.  doi: 10.1002/kin.550210203

    5. [5]

      (5)Turanyi, T. New J. Chem. 1990, 14, 795.

    6. [6]

      (6) Tomlin, A.S.; Pilling, M.J.; Turanyi, T.; Merkin, J.H.; Brindley, J. Combust. Flame 1992, 91(2),107.

    7. [7]

      (7) Vajda, S.; Valko, P.; Tur′anyi, T. Int. J. Chem. Kinet. 1985, 17, 55.  doi: 10.1002/kin.550170107

    8. [8]

      (8) kulakrishnan, P.; Lawrence, A.D.; McLellan, P.J.; Grandmaison, E.W.; Comput. Chem. Eng. 2006, 30, 1093.  doi: 10.1016/j.compchemeng.2006.02.007

    9. [9]

      (9) Lu, T. F.; Law, C. K. Int. J. Chem. Kinet. 2005, 30, 1333.

    10. [10]

      (10) Jang, Y.; Qiu, R. Acta Phys. -Chim. Sin. 2009 25(5), 1019. [蒋勇,邱榕.物理化学学报,2009, 25(5), 1019.]

    11. [11]

      (11) Massias, A.; Diamantis, D.; Mastorakos, E.; ussis, D.A. Combust. Flame. 1999,117 , 685.  doi: 10.1016/S0010-2180(98)00132-1

    12. [12]

      (12) Massis, A.; Diamantis, D.; Mastorakos, E., ussis, D.A. Combust. Theory Model. 1999,3, 233.  doi: 10.1088/1364-7830/3/2/002

    13. [13]

      (13) Lu, T.F.; Ju, Y.; Law, C.K.; Combust. Flame. 2001,126, 1445.  doi: 10.1016/S0010-2180(01)00252-8

    14. [14]

      (14) Xiao, B.G.; Qian, W.Q.; Yang, S.H.; Le, J.L. Journal of propulsion technology.2006,27 (2),101. [肖保国, 钱炜祺, 杨顺华, 乐嘉陵.推进技术,2006,27 (2),101]

    15. [15]

      (15) Mass, U.; Pope, S. B. Combust. Flame.,1992, 88, 239.  doi: 10.1016/0010-2180(92)90034-M

    16. [16]

      (16)Massias, A.; Diamantis, D.; Mastorakos, E.; ussis, D A. Combust. Flame.,1999, 117, 685.

    17. [17]

      (17) Lam, S. H. Combust. Sci. Technol. 1993, 89, 375.  doi: 10.1080/00102209308924120

    18. [18]

      (18) Lam, S. H. ; ussis, D. A. Int. J. Chem. Kinet. 1994, 26, 461.  doi: 10.1002/kin.550260408

    19. [19]

      (19) Liu, J.W.; Xiong, S.W.; Ma, X.S.; Journal of propulsion technology. 2011,32 (4),525.[刘建文, 熊生伟,马雪松.推进技术,2011,32 (4),525.]

    20. [20]

      (20) Smith, G.P.; lden, D.M.; Frenklach, M.; Moriarty, N.W.;Eiteneer, B.; ldenberg,M.;Bowman,C.T.; Hanson, R.K.;Song, S.;Gardiner, W.C.; Lissianski, V. V.;Qin, Z. GRI-Mech Home Page. http://www.me.berkeley.edu/grimech. (accessed Nov 25, 2009).

    21. [21]

      (21)Andrei, K. ; Michael, F. Reduced Reaction Sets based on GRI-Mech 1.2. http://www.me.berkeley.edu/drm/(accessed Nov 25, 2009).

    22. [22]

      (22) Seery, D.J.; Bowman, C.T. Combust. Flame 1970, 14,37.

    23. [23]

      (23) Yasuhiro O.; Hideaki K. JSME Int J., Ser. B 2005, 48 (3), 603

    24. [24]

      (24) Vagelopoulos, C.M.; E lfopoulos, F.N.; Law, C.K. Proc. Combust. Inst. 1994, 25,1341.

    25. [25]

      (25) Hassan, M.I.; Aung, K.T.; Faeth, G.M. Combust. Flame 1998, 115, 539.  doi: 10.1016/S0010-2180(98)00025-X

  • 加载中
    1. [1]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    4. [4]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    5. [5]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    6. [6]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    17. [17]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(908)
  • Abstract views(2644)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return