Citation: WEN Fei, ZHONG Bei-Jing. Skeletal Mechanism Generation Based on Eigenvalue Analysis Method[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1306-1312. doi: 10.3866/PKU.WHXB201204012 shu

Skeletal Mechanism Generation Based on Eigenvalue Analysis Method

  • Received Date: 22 November 2011
    Available Online: 1 April 2012

    Fund Project: 国家自然科学基金(51036004)资助项目 (51036004)

  • A new eigenvalue analysis-based method is presented for the construction of skeletal reduced mechanisms from complex chemical reaction mechanisms. A reduced mechanism of 21 species and 83 elementary reactions for methane-air combustion was generated from detailed mechanism GRI1.2. The ignition delay time, obtained for different values of equivalence ratio, initial temperature and pressure on the basis of this reduced mechanism, were compared with those based on the detailed mechanism GRI1.2, and another skeletal mechanism DRM19. The reduced mechanism agreed favorably with the detailed model, and performed more accurately than DRM19. Two reduced mechanisms, the first involving 120 reactions among 26 species, the second, 140 reactions among 30 species, were also generated from GRI3.0. They were tested by means of premixed laminar flame calculations. The method very accurately predicted speed of flame propagation and key species concentration and even NO concentration distribution in methane combustion.
  • 加载中
    1. [1]

      (1) Bykov, V.; Maas, U. Proc. Combust. Inst. 2007, 31(1), 465.

    2. [2]

      (2)Xu, X.G.; Xu, M.H.; Qiao, Y. Coal Conversion. 2004, 27(4), 1.[徐晓光,徐明厚,乔瑜. 煤炭转化, 2004, 27(4), 1.]

    3. [3]

      (3)Dunker, A.M. Int. J. Chem. Phys. 1984, 81, 2385.

    4. [4]

      (4) Turanyi T.; Berces T.; Vajda S. Int. J. Chem. Kinet. 1989, 21,83.  doi: 10.1002/kin.550210203

    5. [5]

      (5)Turanyi, T. New J. Chem. 1990, 14, 795.

    6. [6]

      (6) Tomlin, A.S.; Pilling, M.J.; Turanyi, T.; Merkin, J.H.; Brindley, J. Combust. Flame 1992, 91(2),107.

    7. [7]

      (7) Vajda, S.; Valko, P.; Tur′anyi, T. Int. J. Chem. Kinet. 1985, 17, 55.  doi: 10.1002/kin.550170107

    8. [8]

      (8) kulakrishnan, P.; Lawrence, A.D.; McLellan, P.J.; Grandmaison, E.W.; Comput. Chem. Eng. 2006, 30, 1093.  doi: 10.1016/j.compchemeng.2006.02.007

    9. [9]

      (9) Lu, T. F.; Law, C. K. Int. J. Chem. Kinet. 2005, 30, 1333.

    10. [10]

      (10) Jang, Y.; Qiu, R. Acta Phys. -Chim. Sin. 2009 25(5), 1019. [蒋勇,邱榕.物理化学学报,2009, 25(5), 1019.]

    11. [11]

      (11) Massias, A.; Diamantis, D.; Mastorakos, E.; ussis, D.A. Combust. Flame. 1999,117 , 685.  doi: 10.1016/S0010-2180(98)00132-1

    12. [12]

      (12) Massis, A.; Diamantis, D.; Mastorakos, E., ussis, D.A. Combust. Theory Model. 1999,3, 233.  doi: 10.1088/1364-7830/3/2/002

    13. [13]

      (13) Lu, T.F.; Ju, Y.; Law, C.K.; Combust. Flame. 2001,126, 1445.  doi: 10.1016/S0010-2180(01)00252-8

    14. [14]

      (14) Xiao, B.G.; Qian, W.Q.; Yang, S.H.; Le, J.L. Journal of propulsion technology.2006,27 (2),101. [肖保国, 钱炜祺, 杨顺华, 乐嘉陵.推进技术,2006,27 (2),101]

    15. [15]

      (15) Mass, U.; Pope, S. B. Combust. Flame.,1992, 88, 239.  doi: 10.1016/0010-2180(92)90034-M

    16. [16]

      (16)Massias, A.; Diamantis, D.; Mastorakos, E.; ussis, D A. Combust. Flame.,1999, 117, 685.

    17. [17]

      (17) Lam, S. H. Combust. Sci. Technol. 1993, 89, 375.  doi: 10.1080/00102209308924120

    18. [18]

      (18) Lam, S. H. ; ussis, D. A. Int. J. Chem. Kinet. 1994, 26, 461.  doi: 10.1002/kin.550260408

    19. [19]

      (19) Liu, J.W.; Xiong, S.W.; Ma, X.S.; Journal of propulsion technology. 2011,32 (4),525.[刘建文, 熊生伟,马雪松.推进技术,2011,32 (4),525.]

    20. [20]

      (20) Smith, G.P.; lden, D.M.; Frenklach, M.; Moriarty, N.W.;Eiteneer, B.; ldenberg,M.;Bowman,C.T.; Hanson, R.K.;Song, S.;Gardiner, W.C.; Lissianski, V. V.;Qin, Z. GRI-Mech Home Page. http://www.me.berkeley.edu/grimech. (accessed Nov 25, 2009).

    21. [21]

      (21)Andrei, K. ; Michael, F. Reduced Reaction Sets based on GRI-Mech 1.2. http://www.me.berkeley.edu/drm/(accessed Nov 25, 2009).

    22. [22]

      (22) Seery, D.J.; Bowman, C.T. Combust. Flame 1970, 14,37.

    23. [23]

      (23) Yasuhiro O.; Hideaki K. JSME Int J., Ser. B 2005, 48 (3), 603

    24. [24]

      (24) Vagelopoulos, C.M.; E lfopoulos, F.N.; Law, C.K. Proc. Combust. Inst. 1994, 25,1341.

    25. [25]

      (25) Hassan, M.I.; Aung, K.T.; Faeth, G.M. Combust. Flame 1998, 115, 539.  doi: 10.1016/S0010-2180(98)00025-X

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    18. [18]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    19. [19]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(908)
  • Abstract views(2318)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return