Citation: ZHOU Ju-Fa, ZHAO Ming, PENG Na, YANG Zheng-Zheng, NG Mao-Chu, CHEN Yao-Qiang. Performance Effect of Pt/MOx-SiO2 (M=Ce, Zr, Al) Catalysts for CO and C3H8 Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1448-1454. doi: 10.3866/PKU.WHXB201204011 shu

Performance Effect of Pt/MOx-SiO2 (M=Ce, Zr, Al) Catalysts for CO and C3H8 Oxidation

  • Received Date: 12 January 2012
    Available Online: 1 April 2012

    Fund Project: 国家自然科学基金(21173153) (21173153)四川省科技厅科技支撑项目(2011GZ0035)资助 (2011GZ0035)

  • MOx-SiO2 (M=Ce, Zr, Al) mixed oxides with a MOx:SiO2 mass ratio of 1:1 were prepared by co-precipitation. Pt-only diesel oxidation catalysts supported on these mixed oxides were obtained by the incipient wetness method. The catalytic activities in simplified diesel exhaust gas before and after SO2 treatment were analyzed. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, NH3/O2/CO2 temperature programmed desorption (NH3/O2/CO2-TPD) and X-ray photoelectron spectroscopy (XPS). The results of NH3-TPD suggested that the surface of the catalysts had multiple acidic sites, and the number of medium-strength acidic sites increased following treatment with SO2. The results of O2-TPD revealed that there were α and β oxygen species in the catalysts, and the amount of O2 desorption decreased for the SO2-treated catalysts. The Pt/Al2O3-SiO2 catalyst exhibited the lowest surface acidity and the largest amount of oxygen desorption. XPS indicated that the binding energy of Pt 4f5/2 decreased when the catalysts were treated with SO2. All the catalysts showed excellent activity for CO and C3H8, and the Pt/ ZrO2-SiO2 catalyst exhibited the best SO2 poisoning resistance, showing the potential for these catalysts to be applied in diesel oxidation.
  • 加载中
    1. [1]

      (1) Zelenka, P.; Cartellieri, W.; Herzog, P. Appl. Catal. B 1996, 10, 3.  doi: 10.1016/0926-3373(96)00021-5

    2. [2]

      (2) Ma, S. F. Petroleum Products Application Research 2010, No. 4, 52. [马淑芬. 石油商技, 2010, No. 4, 52.]

    3. [3]

      (3) Yu, Y. C. Modern Components 2008, No. 4, 22. [于永初. 现代零部件, 2008, No. 4, 22.]

    4. [4]

      (4) Min, C. B.; Ye, D. Q.; Zhou, Y. P. Guangzhou Environ. Sci. 2009, 24, 17. [明彩兵, 叶代启, 周遗品. 广州环境科学, 2009, 24, 17.]

    5. [5]

      (5) Burch, R.; Watling, T. C. Catal. Lett. 1997, 43, 19.  doi: 10.1023/A:1018974102756

    6. [6]

      (6) Burch, R.; Watling, T. C. J. Catal. 1997, 169, 45.  doi: 10.1006/jcat.1997.1686

    7. [7]

      (7) Vernoux, P.; Leinekugel-Le-Cocq, A .Y.; Gaillard, F. J. Catal. 2003, 219, 247.  doi: 10.1016/S0021-9517(03)00200-8

    8. [8]

      (8) Joubert, E.; Courtois, X.; Marecot, P.; Duprez, D. Appl. Catal. B 2006, 64, 103.  doi: 10.1016/j.apcatb.2005.11.006

    9. [9]

      (9) Yazawa, Y.; Kagi, N.; Komai, S-i.; Satsuma, A.; Murakami, Y.; Hattori, T. Catal. Lett. 2001, 72, 157.  doi: 10.1023/A:1009027926457

    10. [10]

      (10) Stein, H. J. Appl. Catal. B 1996, 10, 69.  doi: 10.1016/0926-3373(96)00024-0

    11. [11]

      (11) Galisteo, F. C.; Larese, C.; Mariscal, R.; Granados, M. L.; Fierro, J. L. G.; Ferná ndez-Ruiz, R.; Furió, M. Top. Catal. 2004, 30, 451.  doi: 10.1023/B:TOCA.0000029789.64784.47

    12. [12]

      (12) Galisteo, F. C.; Mariscal, R.; Granados, M. L.; Poves, M. D. Z.; Fierro, J. L. G.; Kr_ger, V.; Keiski, R. L. Appl. Catal. B 2007, 72, 272.  doi: 10.1016/j.apcatb.2006.11.004

    13. [13]

      (13) Nagai, Y.; Shinjoh, H.; Yokota, K. Appl. Catal. B 2002, 39, 149.  doi: 10.1016/S0926-3373(02)00082-6

    14. [14]

      (14) Burch, R.; Watling, T. C. Appl. Catal. B 1998, 17, 131.  doi: 10.1016/S0926-3373(98)00007-1

    15. [15]

      (15) Kolli, T.; Huuhtanen, M.; Hallikainen, A.; Kallinen, K.; Keiski, R. L. Catal. Lett. 2009, 127, 49.  doi: 10.1007/s10562-008-9651-x

    16. [16]

      (16) Kolli, T.; Kanerva, T.; Huuhtanen, M.; Vippola, M.; Kallinen, K.; Kinnunen, T.; Lepist_, T.; Lahtinen, J.; Keiski, R. L. Catal. Today 2010, 154, 303.  doi: 10.1016/j.cattod.2009.12.008

    17. [17]

      (17) Corro, G. React. Kinet. Catal. Lett. 2002, 75, 89.  doi: 10.1023/A:1014853602908

    18. [18]

      (18) Xue, E.; Seshan, K.; Ross, J. R. H. Appl. Catal. B 1996, 11, 65.  doi: 10.1016/S0926-3373(96)00034-3

    19. [19]

      (19) Corro, G.; Fierro, J. L. G.; Montiel, R.; Bañuelos, F. J. Mol. Catal. A:Chem. 2005, 228, 275.  doi: 10.1016/j.molcata.2004.09.056

    20. [20]

      (20) Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419.  doi: 10.1016/S0920-5861(02)00384-X

    21. [21]

      (21) Li, H. M.; Zhou, J. F.; Zhu, Q. C.; Zeng, S. H.; Wei. Z. L.; Chen, Y. Q.; ng, M. C. Chem. J. Chin. Univ. 2009, 30, 2484. [李红梅, 周菊发, 祝清超, 曾少华, 魏振玲, 陈耀强, 龚茂初. 高等学校化学学报, 2009, 30, 2484.]

    22. [22]

      (22) Liang, J.; Huang, H. Z.; Xie, Y. C. Acta Phys.-Chim. Sin. 2003, 19, 30. [梁健, 黄惠忠, 谢有畅. 物理化学学报, 2003, 19, 30.]

    23. [23]

      (23) Yang, P. C.; Cai, X. H.; Xie, Y. C. Acta Phys.-Chim. Sin. 2003, 19, 714. [杨鹏程, 蔡小海, 谢有畅. 物理化学学报, 2003, 19, 714.]

    24. [24]

      (24) Long, E. Y.; Wang, Y.; Zhang, X. Y.; Li, Y. L.; ng, M. C.; Chen, Y. Q. Chin. J. Catal. 2010, 31, 313. [龙恩艳, 王云, 张晓玉, 李移乐, 龚茂初, 陈耀强. 催化学报, 2010, 31, 313.]

    25. [25]

      (25) Xin, Q. Research Methods of Solid Catalyst; Science Press: Beijing, 2004; pp 305-306. [辛勤. 固体催化剂研究方法. 北京:科学出版社, 2004: 305-306.]

    26. [26]

      (26) Ming, C. B.; Ye, D. Q.; Lang, H. Vehi. Engine 2008, No. 173, 14. [明彩兵, 叶代启, 梁红. 车用发动机, 2008, No. 173, 14.]

    27. [27]

      (27) Chen, T.; Li, W. K.; Yu, C. Y. Acta Chimica. Sinica. 1999, 57, 986. [陈铜, 李文钊, 于春英. 化学学报, 1999, 57, 986.]

    28. [28]

      (28) Wu, H. C.; Liu, L. C.; Yang, S. M. Appl. Catal. A 2001, 211, 159.  doi: 10.1016/S0926-860X(00)00869-3

    29. [29]

      (29) Olsson, L.; Fridell, E. J. Catal. 2002, 210, 340.  doi: 10.1006/jcat.2002.3698

    30. [30]

      (30) Yoshida, H.; Yazawa, Y.; Hattori, T. Catal. Today 2003, 87, 19.  doi: 10.1016/j.cattod.2003.10.001

    31. [31]

      (31) Burch, R.; Halpin, E.; Hayes, M.; Ruth, K.; Sullivan, J. A. Appl. Catal. B 1998, 19, 199.  doi: 10.1016/S0926-3373(98)00079-4

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(1081)
  • Abstract views(1996)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return