Citation: SHAO Xin-Chao, DUAN Lin-Hai, WU Yu-Ye, QIN Yu-Cai, YU Wen-Guang, WANG Yuan, LI Huai-Lei, SUN Zhao-Lin, SONG Li-Juan. Effect of Surface Acidity of CuO-SBA-15 on Adsorptive Desulfurization of Fuel Oils[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1467-1473. doi: 10.3866/PKU.WHXB201203312 shu

Effect of Surface Acidity of CuO-SBA-15 on Adsorptive Desulfurization of Fuel Oils

  • Received Date: 27 February 2012
    Available Online: 31 March 2012

    Fund Project: 国家自然科学基金(20976077, 21076100) (20976077, 21076100) 国家重点基础研究发展规划项目(973) (2007CB216403) (973) (2007CB216403)

  • Solid-state grinding is a simple and effective technique to incorporate active species into the channels of mesoporous materials with different degrees of filling. Using this method, different concentrations of CuO were loaded into the mesochannels of as-prepared mesoporous silica (APS) and calcined SBA-15 (CS). The samples were prepared and characterized using X-ray diffraction (XRD), N2 physisorption, and Fourier transform infrared (FTIR) spectroscopy. The relative number of hydroxyl groups was studied by in situ FTIR spectroscopy, and the total surface acidity of the adsorbents was monitored by FTIR spectroscopy at 423 K using pyridine as a probe. Desulfurization of fluid catalytic cracking (FCC) fuel oils using these materials was investigated. The results suggest that CuO interacts directly with support hydroxyl groups to form [Si-O-Cu-O-Si] linkages in the mixtures, which can effectively constrain the condensation of hydroxyl groups in SBA-15 to improve the mesostructure of the adsorbents during calcination. Saturated coverage of the surface of APS is reached using 3 mmol·g-1 CuO. However, using CS, aggregation of CuO is observed in the material containing 3 mmol·g-1 of CuO. Both the surface acidity and desulfurization performance significantly increase upon modification of SBA-15 with CuO, and then decrease slowly as the concentration of CuO is increased. The sample containing 3 mmol·g-1 CuO shows the highest Lewis acidity and desulfurization performance. The Lewis acidity of the adsorbents matches the adsorptive desulfurization performance. It is also demonstrated that reduction of charge density around copper atoms helps to form Lewis acid sites.
  • 加载中
    1. [1]

      (1) Wang, Y. H.; Yang, R. T. Ind. Eng. Chem. Res. 2009, 48, 142.  doi: 10.1021/ie800208g

    2. [2]

      (2) Wang, H. G.; Jiang, H.; Xu, J.; Sun, Z. L.; Zhang, X. T.; Zhu, H. L.; Song, L. J. Acta Phys. -Chim. Sin. 2008, 24, 1714. [王洪国, 姜恒, 徐静, 孙兆林, 张晓彤, 朱赫礼, 宋丽娟. 物理化学学报, 2008, 24, 1714.]

    3. [3]

      (3) Wang, W. Y.; Pan, M. X.; Qin, Y. C.;Wang, L. T.; Song, L. J. Acta Phys. -Chim. Sin. 2011, 27, 1176. [王旺银, 潘明雪, 秦玉才, 王凌涛, 宋丽娟. 物理化学学报, 2011, 27, 1176.]  doi: 10.3866/PKU.WHXB20110442

    4. [4]

      (4) Ma, X. L.; Velu, S.; Kim, J. H.; Song, C. S. Appl. Catal. B-Enviro. 2005, 56, 137.  doi: 10.1016/j.apcatb.2004.08.013

    5. [5]

      (5) Shan, J. H.; Chen, L.; Sun, L. B.; Liu, X. Q. Energy Fuels 2011, 25, 2993.

    6. [6]

      (6) Wu, W. Z.; Ren, S. H.; Hou, Y. C.; Jin, M. J. Ind. Eng. Chem. Res. 2011, 50, 998.  doi: 10.1021/ie101126a

    7. [7]

      (7) Rath, D.; Parida, K. M. Ind. Eng. Chem. Res. 2011, 50, 2839.  doi: 10.1021/ie101314f

    8. [8]

      (8) Cedeno-Caero, L.; Fabian-Mijan s, L. Ind. Eng. Chem. Res. 2011, 50, 2659.  doi: 10.1021/ie100680p

    9. [9]

      (9) Song, X. M.; Zhang, W.; Xu, K.; Zhang, Q. A.; Liu, D. L.; Wu, S. Y.; Verpoort, F. Ind. Eng. Chem. Res. 2010, 49, 11760.  doi: 10.1021/ie100957k

    10. [10]

      (10) Li, W. L.; Xing, J. M.; Xiong, X. C.; Huang, J. X.; Liu, H. Z. Ind. Eng. Chem. Res. 2006, 45, 2845.  doi: 10.1021/ie051125l

    11. [11]

      (11) Wang, Y. H.; Yang, R. T.; Heinzel, J. M. Chem. Eng. Sci. 2008, 63, 356

    12. [12]

      (12) Ju, X. F.; Jin, L. L.; Ma, T.; Chen, X. L.; Song, L. J. Acta Phys. -Chim. Sin. 2009, 25, 2256. [鞠秀芳, 靳玲玲, 马涛, 陈晓陆, 宋丽娟. 物理化学学报, 2009, 25, 2256.]  doi: 10.3866/PKU.WHXB20091024

    13. [13]

      (13) Hernandez-Maldonado, A. J.; Yang, R. T. Ind. Eng. Chem. Res. 2003, 42, 123.  doi: 10.1021/ie020728j

    14. [14]

      (14) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1997, 120, 6025.

    15. [15]

      (15) Wan, Y.; Zhao, D. Y. Chem. Rev. 2006, 107, 2721.

    16. [16]

      (16) Vinu, A.; Kumar, G. S.; Ariga, K.; Murugesan, V. J. Mol. Catal. A-Chem. 2005, 234, 57.

    17. [17]

      (17) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  doi: 10.1126/science.279.5350.548

    18. [18]

      (18) Szegedi, A.; Popova, M.; Minchev, C. J. Mater. Sci. 2008, 44, 6710.

    19. [19]

      (19) Yang, J. S.; Jung, W. Y.; Lee, G. D.; Park, S. S.; Hong, S. S. Top. Catal. 2010, 53, 543.  doi: 10.1007/s11244-010-9484-x

    20. [20]

      (20) Wang, Y. H.; Yang, F. H.; Yang, R. T. Ind. Eng. Chem. Res. 2006, 45, 7649.  doi: 10.1021/ie060922w

    21. [21]

      (21) Guo, X. Y.; Yin, A. Y.; Dai, W. L.; Fan, K. N. Catal. Lett. 2009, 131, 22.

    22. [22]

      (22) Wang, Y. M.; Wu, Z. Y.; Wei, Y. L.; Zhu, J. H. Microporous Mesoporous Mat. 2005, 84, 128.

    23. [23]

      (23) Basaldella, E. I.; Tara, J. C.; Armenta, G. A.; Patino-Iglesias, M. E.; Castellon, E. R. J Sol-Gel Sci. Technol. 2006, 37, 141.  doi: 10.1007/s10971-006-6434-y

    24. [24]

      (24) Wang, Y. M.; Wu, Z. Y.; Shi, L. Y.; Zhu, J. H. Adv. Mater. 2005, 17, 323.  doi: 10.1002/adma.200400860

    25. [25]

      (25) Sun, Y.; Walspurger, S.; Tessonnier, J. P.; Louis, B.; Sommer, J. Appl. Catal. A -Gen. 2006, 300, 91.  doi: 10.1016/j.apcata.2005.09.038

    26. [26]

      (26) Mohamed, A. B.; Synthesis, Characterization and Activity of Al-MCM-41 Catalyst for Hydroxyalkylation of Epoxides. Ph. D. Dissertation, University of Teknologi Malaysia, Johor, 2005.

    27. [27]

      (27) Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. J. Phys. Chem. B 2005, 109, 1763.  doi: 10.1021/jp045798d

    28. [28]

      (28) Tian, B. Z.; Liu, X. Y.; Yang, H. F.; Xie, S. H.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Adv. Mater. 2003, 15, 1370.  doi: 10.1002/adma.200305211

    29. [29]

      (29) Zhou, C. F.; Wang, Y. M.; Cao, Y.; Zhuang, T. T.; Huang, W.; Chun, Y.; Zhu, J. H. J. Mater. Chem. 2006, 16, 1520.  doi: 10.1039/b514317a

    30. [30]

      (30) Wang, Y. M.; Wu, Z. Y.; Zhu, J. H. J. Solid State Chem. 2004, 177, 3815.  doi: 10.1016/j.jssc.2004.07.013

    31. [31]

      (31) Lopez, N.; Illas, F. J. Phys. Chem. B 1999, 103, 1712.  doi: 10.1021/jp9840174

    32. [32]

      (32) Lercher, J. A.; Grundling, C.; Eder-Mirth, G. Catal. Today 1996, 27, 343.

    33. [33]

      (33) Tanabe K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J. Bull. Chem. Soc. Jpn. 1974, 47, 1065.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    5. [5]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    8. [8]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(939)
  • Abstract views(2619)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return