Citation: WANG Shao-Zeng, ZOU Hong-Hu, MENG Ming, LI Zhi-Jun, BAO Jun, LI Xin-Gang. The Performance of the NOx Storage Capacity and Sulfur Tolerance of the La0.7Sr0.3Co1-xFexO3 Catalyst[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1474-1480. doi: 10.3866/PKU.WHXB201203311 shu

The Performance of the NOx Storage Capacity and Sulfur Tolerance of the La0.7Sr0.3Co1-xFexO3 Catalyst

  • Received Date: 16 January 2012
    Available Online: 31 March 2012

    Fund Project: 国家自然科学基金(20806056, U1162103) (20806056, U1162103) 国家高技术研究发展计划(863 计划) (2008AA06Z323) (863 计划) (2008AA06Z323) 天津市自然科学基金(11JCYBJC03700) (11JCYBJC03700) 教育部新世纪优秀人才支持计划(NCET-10-0615) (NCET-10-0615) 教育部留学归国人员科研启动基金(2011-1568)以及天津大学内燃机燃烧学国家重点实验室开放基金(K2012-05)资助项目 (2011-1568)以及天津大学内燃机燃烧学国家重点实验室开放基金(K2012-05)

  • In this paper, a series of La0.7Sr0.3Co1-xFexO3 (x=0, 0.2, 0.6, and 1.0) catalysts was synthesized by a sol-gel method with calcination at 700 °C in static air. The effect of the Fe doping on the structure, the performance of the NOx storage, sulfur tolerance and regeneration of the perovskite catalysts was investigated. Our results showed that the partial substitution of Co with Fe improved the depersion of the SrCO3 phase, and that the perovskite phase became the only species detected from the X-ray diffraction (XRD) patterns. The NOx storage capacity (NSC) of the catalysts dropped following an increase in the proportion of Fe doping. The deposition of sulfate on the surface and the partial structural damage of the La0.7Sr0.3CoO3 catalyst led to a dramatic reduction in the NSC and the NO oxidation capacity after the sulfation treatment: the NSC being reduced by 64.2%, and the conversion of NO-to-NO2 falling to 43.4% from 72.8%. The sulfur tolerance of the perovskite catalyst, however, was improved after doping with Fe at the B sites of the La0.7Sr0.3CoO3 catalyst. Of all of these catalysts, the perovskite with 60% of Fe doping (the Fe60 sample) gave the best performance for sulfur tolerane properties and regeneration ability. The NSC of the Fe60 sample was reduced by only 16.6%, and the NO-to-NO2 conversion reached the value almost similar to that of the fresh sample (i.e. 69.1%).
  • 加载中
    1. [1]

      (1) Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419.  doi: 10.1016/S0920-5861(02)00384-X

    2. [2]

      (2) Kang, S. F.; Jiang, Z.; Hao, Z. P. Acta Phys. -Chim. Sin. 2005, 21, 278. [康守方, 蒋正, 郝郑平. 物理化学学报, 2005, 21, 278.]

    3. [3]

      (3) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi S.; Kasahara, K. Catal. Today 1996, 27, 63.  doi: 10.1016/0920-5861(95)00173-5

    4. [4]

      (4) Li, X. G.; Meng, M.; Lin, P. Y.; Huang, Z. J.; Fu, Y. L.; Hu, T. D.; Xie, Y. N. Acta Phys. -Chim. Sin. 2001, 17, 1072. [李新刚, 孟明, 林培琰, 黄志坚, 伏义路, 谢亚宁, 胡天斗. 物理化学学报, 2001, 17, 1072.]

    5. [5]

      (5) Li, X. G.; Meng, M.; Lin, P. Y.; Fu, Y. L.; Hu, T. D.; Xie, Y. N.; Zhang, J. Top. Catal. 2003, 22, 111.  doi: 10.1023/A:1021480115825

    6. [6]

      (6) Fridell, E.; Persson, H.; Westerberg, B.; Olsson, L.; Skoglundh, M. Catal. Lett. 2000, 66, 71.  doi: 10.1023/A:1019074901578

    7. [7]

      (7) Epling, W.; Campbell, L.; Yezerets, A.; Currier, N.; Parks, J. Catal. Rev. Sci. & Eng. 2004, 46, 163.  doi: 10.1081/CR-200031932

    8. [8]

      (8) Li, X. G.; Vernoux, P. Appl. Catal. B 2005, 61, 267.  doi: 10.1016/j.apcatb.2005.06.003

    9. [9]

      (9) Roy, S.; Baiker, A. Chem. Rev. 2009, 109, 4054.  doi: 10.1021/cr800496f

    10. [10]

      (10) Sedlmair, C.; Seshan, K.; Jentys, A.; Lercher, J. Catal. Today 2002, 75, 413.  doi: 10.1016/S0920-5861(02)00091-3

    11. [11]

      (11) Dawody, J.; Skoglundh, M.; Olsson, L.; Fridell, E. Appl. Catal. B 2007, 70, 179.  doi: 10.1016/j.apcatb.2005.11.021

    12. [12]

      (12) Xiao, J. H.; Li, X. H.; Deng, S.; Xu, J. C.; Wang, L. F. Acta Phys. -Chim. Sin. 2006, 22, 815. [肖建华, 李雪辉, 邓莎, 徐建昌, 王乐夫. 物理化学学报, 2006, 22, 815.]

    13. [13]

      (13) Pei, M. X.; Lin, H.; Shangguan W. F.; Huang, Z. Acta Phys. -Chim. Sin. 2005, 21, 255. [裴梅香, 林赫, 上官文峰, 黄震. 物理化学学报, 2005, 21, 255.]

    14. [14]

      (14) Liu, J.; Zhao, Z.; Lan, J.; Xu, C.; Duan, A.; Jiang, G.; Wang, X.; He, H. J. Phys. Chem. C 2009, 113, 17114.  doi: 10.1021/jp9056303

    15. [15]

      (15) Li, X. G.; Chen, J. F.; Lin, P. Y.; Meng, M.; Fu, Y. L.; Tu, J.; Li, Q. X. Catal. Commun. 2004, 5, 25.  doi: 10.1016/j.catcom.2003.11.002

    16. [16]

      (16) Xian, H.; Zhang, X. W.; Li, X. G.; Li, L. Y.; Zou, H. H.; Meng, M.; Li, Q.; Tan, Y. S.; Tsubaki, N. J. Phys. Chem. C 2010, 114, 11844.  doi: 10.1021/jp100197c

    17. [17]

      (17) Xian, H.; Li, F. L.; Li, X. G.; Zhang, X. W.; Meng, M.; Zhang, T. Y.; Tsubaki, N. Fuel Proc. Technol. 2011, 92, 1718.  doi: 10.1016/j.fuproc.2011.04.021

    18. [18]

      (18) Xian, H.; Zhang, X. W.; Li, X. G.; Zou, H. H.; Meng, M.; Zou, Z. Q.; Guo, L. H.; Tsubaki, N. Catal. Today 2010, 158, 215.  doi: 10.1016/j.cattod.2010.03.026

    19. [19]

      (19) Pan, G. H.; Meng, M.; Li, X. G. Chin. J. Catal. 2011, 32, 135. [潘广宏, 孟明, 李新刚. 催化学报, 2011, 32, 135.]

    20. [20]

      (20) Milt, V.; Ulla, M.; Miró, E. Appl. Catal. B 2005, 57, 13.  doi: 10.1016/j.apcatb.2004.09.022

    21. [21]

      (21) Chen, J. F.; Meng, M.; Lin, P. Y.; Li, X. G.; Fu, Y. L.; Yu, S. M. Chin. J. Catal. 2003, 24, 419. [陈加福, 孟明, 林培琰, 李新刚, 伏义路, 俞寿明. 催化学报, 2003, 24, 419.]

    22. [22]

      (22) Hodjati, S.; Petit, C.; Pitchon, V.; Kiennemann, A. Appl. Catal. B 2000, 27, 117.  doi: 10.1016/S0926-3373(00)00139-9

    23. [23]

      (23) Hodjati, S.; Petit, C.; Pitchon, V.; Kiennemann, A. Appl. Catal. B 2001, 30, 247.  doi: 10.1016/S0926-3373(00)00249-6

    24. [24]

      (24) Yamazaki, K.; Suzuki, T.; Takahashi, N.; Yokota, K.; Sugiura, M. Appl. Catal. B 2001, 30, 459.  doi: 10.1016/S0926-3373(00)00263-0

    25. [25]

      (25) Li, X. G.; Dong, Y. H.; Xian, H.; Hernández, W. Y.; Meng, M.; Zou, H. H.; Ma, A. J.; Zhang, T. Y.; Jiang, Z.; Tsubaki, N.; Vernoux, P. Energy Environ. Sci. 2011, 4, 3351.  doi: 10.1039/c1ee01726h

    26. [26]

      (26) Ferri, D.; Forni, L.; Dekkers, M.; Nieuwenhuys, B. Appl. Catal. B 1998, 16, 339.  doi: 10.1016/S0926-3373(97)00090-8

    27. [27]

      (27) Fierro, J.; Pena, M.; Tejuca, L. J. Mater. Sci. 1988, 23, 1018.  doi: 10.1007/BF01154005

    28. [28]

      (28) Tejuca, L.; Bell, A.; Ferri, D.; Pena, M. Appl. Surf. Sci. 1988, 31, 301.  doi: 10.1016/0169-4332(88)90095-5

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    5. [5]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(943)
  • Abstract views(2447)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return