Citation: WANG Fang, WANG Cai-Hong, LI Da-Zhi. Novel Method of Controlling Formation of Hot-Spot over ld Catalysts for CO Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1455-1460. doi: 10.3866/PKU.WHXB201203303 shu

Novel Method of Controlling Formation of Hot-Spot over ld Catalysts for CO Oxidation

  • Received Date: 13 December 2011
    Available Online: 30 March 2012

    Fund Project: 滨州学院科研基金(2010Y06)资助项目 (2010Y06)

  • Au catalysts supported on Al2O3 and MOx-Al2O3 (M=Fe and Zn) were prepared by the deposition-precipitation method. Their catalytic activities for CO oxidation in the absence and presence of an H2-rich steam at room temperature were investigated in detail. Catalyst bed temperatures were determined directly by a thermocouple. The catalyst surface temperature depended on the volume ratio of O2/CO, and the concentrations of CO and H2. The temperature on the Au/Al2O3 surface can reach 170°C during CO oxidation, and is decreased to 55°C by addition of FeOx. These results indicate that formation of hot-spots on γ-alumina-supported ld catalysts could be controlled by adding an appropriate dopant. The structure of the catalysts was characterized by techniques such as X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Addition of a dopant could transfer the active center from Au to AuIII, which resulted in different reaction mechanisms of preferential oxidation of CO in the presence of H2.
  • 加载中
    1. [1]

      (1) Yu, J.; Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin. 2008, 24, 1751.[ 俞俊, 吴贵升, 毛东森, 卢冠忠. 物理化学学报, 2008, 24, 1751.]  doi: 10.1016/S1872-1508(08)60071-6

    2. [2]

      (2) Wen, L.; Lin, Z. Y.; Zhou, J. Z.; Gu, P. Y.; Fu, J. K.; Lin, Z. H. Acta Phys. -Chim. Sin. 2008, 24, 581. [文莉, 林种玉, 周剑章, 古萍英, 傅锦坤, 林仲华. 物理化学学报, 2008, 24 , 581.]

    3. [3]

      (3) Ye, Q., Huo, F. F., Yan, L. N., Wang, J., Cheng, S. Y., Kang, T. F. Acta Phys. -Chim. Sin., 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872]

    4. [4]

      (4) Wang, S. R.; Wu, S. H.; Shi, J.; Zheng, X. C.; Huang, W. P. Acta Phys. -Chim. Sin. 2004, 20, 428. [王淑荣, 吴世华, 石娟, 郑修成, 黄唯平. 物理化学学报, 2004, 20, 428.]

    5. [5]

      (5) Liu, Y. L., You, C. R., Li, Y., He, T., Zhang, X. Q., Suo, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠荣, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.]

    6. [6]

      (6) Xu, C. X.; Su, J. X.; Xu, J. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129, 42.  doi: 10.1021/ja0675503

    7. [7]

      (7) Wang, F.; Lu, G. X. Catal. Lett. 2007, 115, 46.  doi: 10.1007/s10562-007-9069-x

    8. [8]

      (8) Panzera, G.; Modafferi, V.; Candamano, S.; Donato, A.; Frusteri, F.; Antonucci, P. L. J. Power Sources. 2004, 135 , 177.

    9. [9]

      (9)Zhang, M. H.; Hong, Y.; Ding, S. J.; Hu, J. J.; Fan, Y. X.; Voevodin, A. A.; Su, M. Nanoscale. 2010, 2, 2790.

    10. [10]

      (10) Kahlich, M.; Gasteiger, H.; Behm, R. J. New Mater. Electrochem. Syst. 1998, 1, 39.

    11. [11]

      (11) Echi , M.; Tabata, T. Catal. Today 2004, 90, 269.  doi: 10.1016/j.cattod.2004.04.036

    12. [12]

      (12) Morillo, A.; Merten, C.; Eigenberger, G.; Hermann, I.; Lemken, D. Chem. Ing. Tech. 2003, 75, 68.  doi: 10.1002/cite.200390024

    13. [13]

      (13) Gritsch, A.; Kolios, G.; Eigenberger, G. Chem. Ing. Tech. 2004, 76, 722.  doi: 10.1002/cite.200403369

    14. [14]

      (14) Pinkerton, B.; Luss, D. Ind. Eng. Chem. Res. 2007, 46, 1898.  doi: 10.1021/ie060903m

    15. [15]

      (15) Marwaha, B.; Annamalai, J.; Luss, D. Chem. Eng. Sci. 2001, 56, 89.  doi: 10.1016/S0009-2509(00)00411-5

    16. [16]

      (16) Li, Sh. F.; Chemistry and catalytic reaction engineering, Chemical Industry Press, Beijing 1986, pp.199-202. [李绍芬. 化学与催化反应工程. 北京: 化学工业出版社, 1986: 199-202]

    17. [17]

      (17) Zhu, L. J.; Frens, G. J. Phys. Chem. B 2006, 110, 18307.  doi: 10.1021/jp063456x

    18. [18]

      (18) Haruta, M.; Yamada, N.; Kobayash, T. Iijima, S. J. Catal. 1989, 115, 301.  doi: 10.1016/0021-9517(89)90034-1

    19. [19]

      (19) Visco, A. M.; Neri, F.; Neri, G.; Donato, A.; Milone, C.; Galvagno, S. Phys. Chem. Chem. Phys. 1999, 1, 2869.

    20. [20]

      (20) Li, B. T.; Maruyama, K. J.; Nurunnabi, M.; Kunimori, K.; Tomishige, K. Ind. Eng. Chem. Res. 2005, 44, 485.  doi: 10.1021/ie0493210

    21. [21]

      (21) Graciani, J.; Oviedo, J.; Sanz, J. F. J. Phys. Chem. B 2006, 110, 11600.  doi: 10.1021/jp057322f

    22. [22]

      (22) Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Phys. Rev. Lett. 1998, 81, 2819.  doi: 10.1103/PhysRevLett.81.2819

    23. [23]

      (23) Tripathy, A. K.; Kamble, V. S.; Gupta, N. M. J. Catal. 1999, 187 , 332

    24. [24]

      (24) Reed, T. B. Free Energy Formation of Binary Compounds; MIT Press: Cambridge, 1971.

    25. [25]

      (25) Kotobuki, M.; Watanabe, A.; Uchida, H.; Yamashita, H.; Watanabe, M. J. Catal. 2005, 236, 262.  doi: 10.1016/j.jcat.2005.09.026

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(671)
  • Abstract views(1885)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return