Citation: WANG Fang, WANG Cai-Hong, LI Da-Zhi. Novel Method of Controlling Formation of Hot-Spot over ld Catalysts for CO Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1455-1460. doi: 10.3866/PKU.WHXB201203303
-
Au catalysts supported on Al2O3 and MOx-Al2O3 (M=Fe and Zn) were prepared by the deposition-precipitation method. Their catalytic activities for CO oxidation in the absence and presence of an H2-rich steam at room temperature were investigated in detail. Catalyst bed temperatures were determined directly by a thermocouple. The catalyst surface temperature depended on the volume ratio of O2/CO, and the concentrations of CO and H2. The temperature on the Au/Al2O3 surface can reach 170°C during CO oxidation, and is decreased to 55°C by addition of FeOx. These results indicate that formation of hot-spots on γ-alumina-supported ld catalysts could be controlled by adding an appropriate dopant. The structure of the catalysts was characterized by techniques such as X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Addition of a dopant could transfer the active center from Au to AuIII, which resulted in different reaction mechanisms of preferential oxidation of CO in the presence of H2.
-
Keywords:
-
CO oxidation
, - Dopant,
- ld catalyst,
- Hot-spot
-
-
-
[1]
(1) Yu, J.; Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin. 2008, 24, 1751.[ 俞俊, 吴贵升, 毛东森, 卢冠忠. 物理化学学报, 2008, 24, 1751.] doi: 10.1016/S1872-1508(08)60071-6
-
[2]
(2) Wen, L.; Lin, Z. Y.; Zhou, J. Z.; Gu, P. Y.; Fu, J. K.; Lin, Z. H. Acta Phys. -Chim. Sin. 2008, 24, 581. [文莉, 林种玉, 周剑章, 古萍英, 傅锦坤, 林仲华. 物理化学学报, 2008, 24 , 581.]
-
[3]
(3) Ye, Q., Huo, F. F., Yan, L. N., Wang, J., Cheng, S. Y., Kang, T. F. Acta Phys. -Chim. Sin., 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872]
-
[4]
(4) Wang, S. R.; Wu, S. H.; Shi, J.; Zheng, X. C.; Huang, W. P. Acta Phys. -Chim. Sin. 2004, 20, 428. [王淑荣, 吴世华, 石娟, 郑修成, 黄唯平. 物理化学学报, 2004, 20, 428.]
-
[5]
(5) Liu, Y. L., You, C. R., Li, Y., He, T., Zhang, X. Q., Suo, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠荣, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.]
-
[6]
(6) Xu, C. X.; Su, J. X.; Xu, J. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129, 42. doi: 10.1021/ja0675503
-
[7]
(7) Wang, F.; Lu, G. X. Catal. Lett. 2007, 115, 46. doi: 10.1007/s10562-007-9069-x
-
[8]
(8) Panzera, G.; Modafferi, V.; Candamano, S.; Donato, A.; Frusteri, F.; Antonucci, P. L. J. Power Sources. 2004, 135 , 177.
-
[9]
(9)Zhang, M. H.; Hong, Y.; Ding, S. J.; Hu, J. J.; Fan, Y. X.; Voevodin, A. A.; Su, M. Nanoscale. 2010, 2, 2790.
-
[10]
(10) Kahlich, M.; Gasteiger, H.; Behm, R. J. New Mater. Electrochem. Syst. 1998, 1, 39.
-
[11]
(11) Echi , M.; Tabata, T. Catal. Today 2004, 90, 269. doi: 10.1016/j.cattod.2004.04.036
-
[12]
(12) Morillo, A.; Merten, C.; Eigenberger, G.; Hermann, I.; Lemken, D. Chem. Ing. Tech. 2003, 75, 68. doi: 10.1002/cite.200390024
-
[13]
(13) Gritsch, A.; Kolios, G.; Eigenberger, G. Chem. Ing. Tech. 2004, 76, 722. doi: 10.1002/cite.200403369
-
[14]
(14) Pinkerton, B.; Luss, D. Ind. Eng. Chem. Res. 2007, 46, 1898. doi: 10.1021/ie060903m
-
[15]
(15) Marwaha, B.; Annamalai, J.; Luss, D. Chem. Eng. Sci. 2001, 56, 89. doi: 10.1016/S0009-2509(00)00411-5
-
[16]
(16) Li, Sh. F.; Chemistry and catalytic reaction engineering, Chemical Industry Press, Beijing 1986, pp.199-202. [李绍芬. 化学与催化反应工程. 北京: 化学工业出版社, 1986: 199-202]
-
[17]
(17) Zhu, L. J.; Frens, G. J. Phys. Chem. B 2006, 110, 18307. doi: 10.1021/jp063456x
-
[18]
(18) Haruta, M.; Yamada, N.; Kobayash, T. Iijima, S. J. Catal. 1989, 115, 301. doi: 10.1016/0021-9517(89)90034-1
-
[19]
(19) Visco, A. M.; Neri, F.; Neri, G.; Donato, A.; Milone, C.; Galvagno, S. Phys. Chem. Chem. Phys. 1999, 1, 2869.
-
[20]
(20) Li, B. T.; Maruyama, K. J.; Nurunnabi, M.; Kunimori, K.; Tomishige, K. Ind. Eng. Chem. Res. 2005, 44, 485. doi: 10.1021/ie0493210
-
[21]
(21) Graciani, J.; Oviedo, J.; Sanz, J. F. J. Phys. Chem. B 2006, 110, 11600. doi: 10.1021/jp057322f
-
[22]
(22) Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Phys. Rev. Lett. 1998, 81, 2819. doi: 10.1103/PhysRevLett.81.2819
-
[23]
(23) Tripathy, A. K.; Kamble, V. S.; Gupta, N. M. J. Catal. 1999, 187 , 332
-
[24]
(24) Reed, T. B. Free Energy Formation of Binary Compounds; MIT Press: Cambridge, 1971.
-
[25]
(25) Kotobuki, M.; Watanabe, A.; Uchida, H.; Yamashita, H.; Watanabe, M. J. Catal. 2005, 236, 262. doi: 10.1016/j.jcat.2005.09.026
-
[1]
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[4]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[7]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[8]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[11]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[12]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[13]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[16]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[20]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[1]
Metrics
- PDF Downloads(671)
- Abstract views(1885)
- HTML views(50)