Citation: QIAO Kang, ZENG Ling-Xiao, JIN Hong-Wei, LIU Zhen-Ming, ZHANG Liang-Ren. QSAR Analysis of Human Adenosine A3 Receptor Anta nists[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1509-1519. doi: 10.3866/PKU.WHXB201203272 shu

QSAR Analysis of Human Adenosine A3 Receptor Anta nists

  • Received Date: 22 February 2012
    Available Online: 27 March 2012

    Fund Project: 国家自然科学基金(20972010) (20972010)教育部博士点基金(20090001120049)资助项目 (20090001120049)

  • Ligand-based and receptor-based methods were implemented together to investigate the binding modes of human adenosine A3 anta nists. First, pharmacophore models were developed using the HypoGen program with a training set of 18 diverse human adenosine A3 receptor anta nists from literature. Meanwhile, the three-dimensional structure of A3 receptor was modeled by homology modeling and molecular dynamics, and validated by PROCHECK. Molecular docking was conducted further to investigate receptor-ligand interactions. The pharmacophore model and homology models of A3 receptor matched well, allowing some important information to be obtained. One of the new pharmacophore models was used to screen the MDL drug database report (MDDR) including about 120000 compounds. As a result, eight candidate compounds that can be used for biological evaluation were discovered. These findings are important for the development and discovery of novel selective A3 anta nists and antiasthmatic compounds.
  • 加载中
    1. [1]

      (1) Stone, T. W. Purines: Pharmacology and Physiological Roles; MacMillan: London, 1985.

    2. [2]

      (2) Li, S. Y. Adenosine: A Procursor of Atp, with Cytoprotective and Cytotoxic Effects. Ph. D. Dissertation, Guangzhou Medical University, Guangdong, 2010. [李舒珏. 腺苷的细胞保护和细胞毒性作用[D]. 广东: 广州医学院, 2010.]

    3. [3]

      (3) Ralevic, V.; Burnstock, G. Pharmacol. Rev. 1998, 50, 413.

    4. [4]

      (4) Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Linden, J.; Müller, C. E. Pharmacol. Rev. 2001, 53, 527.

    5. [5]

      (5) Dixon, A. K.; Gubitz, A. K.; Sirinathsinghji, D. J.; Richardson, P. J.; Freeman, T. C. Br. J. Pharmacol. 1996, 118, 1461.

    6. [6]

      (6) Ramkumar, V.; Nie, Z.; Rybak, L. P. Trends Pharmacol. Sci. 1995, 16, 283.  doi: 10.1016/S0165-6147(00)89051-3

    7. [7]

      (7) Carruthers, A. M.; Fozard, J. R. Eur. J. Pharmacol. 1993, 250, 185.  doi: 10.1016/0014-2999(93)90641-T

    8. [8]

      (8) Ferre, S.; Fredholm, B. B.; Morelli, M.; Popoli, P.; Fuxe, K. Trends Neurosci. 1997, 20, 482.  doi: 10.1016/S0166-2236(97)01096-5

    9. [9]

      (9) Xu, X. J.; Hou, T. J.; Qiao, X. B.; Zhang, W. Computer-aided Drug Molecular Design; Chemical Industry Press: Beijing, 2004; pp 295-300. [徐筱杰, 侯廷军, 乔学斌, 章威. 计算机辅助药物分子设计. 北京: 化学工业出版社, 2004: 295-300.]

    10. [10]

      (10) Guo, Z. R. Drug Molecular Design; Science Press: Beijing, 2005; pp 372-373. [郭宗儒. 药物分子设计. 北京: 科学出版社, 2005: 372-373.]

    11. [11]

      (11) Osman, F. G.; Pharmacophore Perception, Development, and Use in Drug Design; International University Line: La Jolla, 2000; pp 8-9.

    12. [12]

      (12) PROTEIN DATA BANK. http://www.rcsb.org (accessed Mar. 26, 2012).

    13. [13]

      (13) Expasy Bioinformatics Resource Portal. http://expasy.org/sprot/ (accessed Mar. 26, 2012).

    14. [14]

      (14) Discovery Studio Software. Version 2.5; San Die : Accelrys. Inc., 2009.

    15. [15]

      (15) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Commun. 1995, 91, 43.  doi: 10.1016/0010-4655(95)00042-E

    16. [16]

      (16) Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model 2001, 7, 306.

    17. [17]

      (17) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727.  doi: 10.1006/jmbi.1996.0897

    18. [18]

      (18) Baraldi, P. G.; Cacciari, B.; Moro, S.; Spalluto, G.; Pastorin, G.; Da Ros T.; Klotz, K. N.; Varani, K.; Gessi, S.; Borea, P. A. J. Med. Chem. 2002, 45, 770.  doi: 10.1021/jm0109614

    19. [19]

      (19) Borghini, A.; Pietra, D.; Domenichelli, P.; Bianucci, A. M. Bioorg. Med. Chem. 2005, 13, 5330.  doi: 10.1016/j.bmc.2005.05.041

    20. [20]

      (20) Baraldi, P. G.; Preti, D.; Tabrizi, M. A.; Romagnoli, R.; Saponaro, G. Baraldi, S.; Botta, M.; Bernardini, C.; Tafi, A.; Tuccinardi, T.; Martinelli, A.; Varani, K.; Borea, P. A. Bioorg. Med. Chem. 2008, 16, 10281.  doi: 10.1016/j.bmc.2008.10.049

    21. [21]

      (21) Baraldi, P. G.; Preti, D.; Tabrizi, M. A.; Fruttarolo, F.; Romagnoli, R.; Zaid, N.A.; Moorman, A. R.; Merighi, S.; Varani, K.; Borea, P. A. J. Med. Chem. 2005, 48, 4697

    22. [22]

      (22) Melman, A.; Wang, B.; Joshi, B. V.; Gao, Z. G.; Castro, S.; Heller, C. L.; Kim, S. K.; Jeong, L. S.; Jacobson, K. A. Bioorg. Med. Chem. 2008, 16, 8546.  doi: 10.1016/j.bmc.2008.08.007

    23. [23]

      (23) Okamura, T.; Kurogi, Y.; Nishikawa, H.; Hashimoto, K.; Fujiwara, H.; Nagao, Y. J. Med.Chem. 2002, 45, 3703.  doi: 10.1021/jm010570p

    24. [24]

      (24) Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Zaid, N. A.; Moorman, A. R.; Varani, K.; Borea, P. A. J. Med. Chem. 2005, 48, 5001.  doi: 10.1021/jm050125k

    25. [25]

      (25) Baraldi, P. G.; Borea, P. A. Trends Pharmacol. Sci. 2000, 21, 456.  doi: 10.1016/S0165-6147(00)01581-9

    26. [26]

      (26) Chen, X.; Liu, X. X.; Huang, H.; Hu, H. H.; Jiang, F. C. Acta Phys. -Chim. Sin. 2008, 24, 281. [陈曦, 刘心霞, 黄慧, 胡慧慧, 姜凤超. 物理化学学报, 2008, 24, 281.]

    27. [27]

      (27) Huang, W. H.; Hu, C. Q.; Liao, Y.; Sheng, R.; Hu, Y. Z. Acta Chim. Sin. 2008, 66, 1889. [黄文海, 胡纯琦, 廖勇, 盛荣, 胡永洲. 化学学报, 2008, 66, 1889.]

    28. [28]

      (28) Bao, H. J.; Tang, Y. L.; Xu, X. J.; Xiang, J. F.; Zheng, Z. H.; Lu, X. H. Chem. J. Chin. Univ. 2010, 31, 938. [鲍红娟, 唐亚林, 徐筱杰, 向俊峰, 郑智慧, 路新华. 高等学校化学学报, 2010, 31, 938.]

    29. [29]

      (29) Osman, F. G.; Pharmacophore Perception, Development, and Use in Drug Design; International University Line: La Jolla, 2000; p 174.

    30. [30]

      (30) Bao, H. J.; Zhang, Y. L.; Qiao, Y. J. Chem. J. Chin. Univ. 2008, 29, 1125. [鲍红娟, 张燕玲, 乔延江. 高等学校化学学报, 2008, 29, 1125.]

    31. [31]

      (31) Osman, F. G.; Pharmacophore Perception, Development, and Use in Drug Design; International University Line: La Jolla, 2000; pp 259-260.

    32. [32]

      (32) Wei, B. Q.; Baase, W. A.; Weaver, L. H.; Mattews, B. W.; Shoichet, B. K. J. Mol. Biol. 2002, 322, 339.  doi: 10.1016/S0022-2836(02)00777-5

    33. [33]

      (33) Hevener, K. E.; Zhao, W.; Ball, D. M.; Babaoglu, K.; Qi, J. J.; White, S. W.; Lee, R. E. J. Chem. Inf. Model 2009, 49, 444.  doi: 10.1021/ci800293n

    34. [34]

      (34) Truchon, J. F.; Bayly, C. I. J. Chem. Inf. Model 2007, 47, 488.  doi: 10.1021/ci600426e

    35. [35]

      (35) Ke, Y. R.; Jin, H. W.; Liu, Z. M.; Zhang, L. R. Acta Phys. -Chim. Sin. 2010, 26, 2833. [柯艳蓉, 金宏威, 刘振明, 张亮仁. 物理化学学报, 2010, 26, 2833.]

    36. [36]

      (36) Bao, H. J.; Zhang, Y. L.; Qiao, Y. J. Acta Phys. -Chim. Sin.2008, 24, 301. [鲍红娟, 张燕玲, 乔延江. 物理化学学报, 2008, 24, 301.]

    37. [37]

      (37) Morris, A. L.; MacArthur, M. W.; Hutchinson, E. G.; Thornton, J. M. Proteins 1992, 12, 345.  doi: 10.1002/prot.340120407

    38. [38]

      (38) Manetti, F.; Schenone, S.; Bondavalli, F.; Brullo, C.; Bruno, O.; Ranise, A.; Mosti, L.; Menozzi, G.; Fossa, P.; Trincavelli, M. L.; Martini, C.; Martinelli, A.; Tintori, C.; Botta, M. J. Med. Chem.. 2005, 48, 7172.  doi: 10.1021/jm050407k

    39. [39]

      (39) Wei, J. The Study of Pharmacophore Modeling and Molecular Docking for Adenosine Receptor Anta nists. Ph. D. Dissertation, Tianjin University, Tianjin, 2007. [魏静. 腺苷受体拮抗剂药效团模建和分子对接研究[D]. 天津: 天津大学, 2007.]

    40. [40]

      (40) Cheng, F.; Xu, Z.; Liu, G.; Tang, Y. Eur. J. Med. Chem. 2010, 45, 3459.  doi: 10.1016/j.ejmech.2010.04.039

    41. [41]

      (41) Tafi, A.; Bernardini, C.; Botta, M.; Corelli, F.; Andreini, M.; Martinelli, A.; Ortore, G.; Baraldi, P. G.; Fruttarolo, F.; Borea, P. A.; Tuccinardi, T. J. Med. Chem. 2006, 49, 4085.  doi: 10.1021/jm051112+

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    3. [3]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    4. [4]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    5. [5]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    6. [6]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    7. [7]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    8. [8]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(866)
  • Abstract views(2305)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return