Citation: WANG Yu, DONG Hui, GENG Liang, YU Gang, ZHU Yue-Xiang, XIE You-Chang. Facile Synthesis of Bimodal Mesoporous Carbon with Thin Pore Walls[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1525-1532. doi: 10.3866/PKU.WHXB201203271 shu

Facile Synthesis of Bimodal Mesoporous Carbon with Thin Pore Walls

  • Received Date: 9 November 2011
    Available Online: 27 March 2012

    Fund Project: 国家自然科学基金(20773004) (20773004)国家重点基础研究发展规划项目(973) (2011CB808702)资助 (973) (2011CB808702)

  • Mesoporous carbon materials are required for application in various areas. In our previous work, we successfully prepared mesoporous carbon with thin pore walls using inexpensive γ-alumina as a template and sucrose as the carbon source, and proposed a mechanism for the synthetic process. In this work, other carbon source was explored to improve the synthetic process and obtain a better understanding of the synthetic mechanism. Compared with sucrose, phenolic resin generated in situ as the carbon precursor can form a complete and robust carbon layer on the template surface in one polymerization and carbonization procedure, simplifying the synthetic process. In addition, the specific surface areas of the carbon materials were greatly increased when phenolic resin was used as the carbon precursor. According to the proposed synthetic mechanism, the mesopores of the carbon materials had two sources: the removal of template particles, and the original pores of the template. When the size of template pores differed significantly from that of the template particles, the obtained carbon materials possessed a bimodal pore size distribution (PSD) at about 4 and 13 nm. In this work, carbon material with a bimodal PSD in the mesopore range was obtained when thin, rod-like alumina was used as the template. The carbon materials possessed ultra large specific surface area (>1800 m2·g-1) and pore volume (>4.5 cm3·g-1), so they were used as electrodes for electric double-layer capacitors. Cyclic voltammograms were nearly rectangular even at a high sweep rate (50 mV·s-1), and the capacitances were relatively high (about 200 F·g-1). When the current density was increased from 0.1 A·g-1 to 1.0 A·g-1, the decrease in specific capacitance was only 10%.
  • 加载中
    1. [1]

      (1) Liang, C. D.; Li, Z. J.; Dai, S. Angewandte Chemie International Edition 2008, 47, 3696.  doi: 10.1002/anie.200702046

    2. [2]

      (2) Lee, J.; Kim, J.; Hyeon, T. Advanced Materials 2006, 18, 2073.  doi: 10.1002/adma.200501576

    3. [3]

      (3) Han, S.; Sohn, K.; Hyeon, T. Chemistry of Materials 2000, 12, 3337.  doi: 10.1021/cm000106t

    4. [4]

      (4) Vinu, A.; Streb, C.; Murugesan, V.; Hartmann, M. Journal of Physical Chemistry B 2003, 107, 8297.  doi: 10.1021/jp035246f

    5. [5]

      (5) Zhuang, X.; Wan, Y.; Feng, C. M.; Shen, Y.; Zhao, D. Y. Chemistry of Materials 2009, 21, 706.  doi: 10.1021/cm8028577

    6. [6]

      (6) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 1999, 412, 169.

    7. [7]

      (7) Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2006, 44, 216.  doi: 10.1016/j.carbon.2005.07.029

    8. [8]

      (8) Li, L. X.; Song, H. H.; Chen, X. H. Electrochim. Acta 2006, 51, 5715.  doi: 10.1016/j.electacta.2006.03.005

    9. [9]

      (9) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin.2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]

    10. [10]

        doi: 10.3866/PKU.WHXB20100330

    11. [11]

      (10) Jia, Z. H.; Liang, S. G.; Jiang, Y. B.; Li, H.; Liu, Z. M.; Zhao, T. Carbon 2009, 47, 2194.  doi: 10.1016/j.carbon.2009.04.001

    12. [12]

      (11) Geng, L.; Wang, Y.; Yu, G.; Zhu, Y. X. Catalysis Communications 2011, 13, 26.  doi: 10.1016/j.catcom.2011.06.014

    13. [13]

      (12) Hao, G. P.; Li, W. C.; Wang, S.; Zhang, S. F.; Lu, A. H. Carbon 2010, 48, 3330.  doi: 10.1016/j.carbon.2010.05.011

    14. [14]

      (13) Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angewandte Chemie International Edition 2008, 47, 373.  doi: 10.1002/anie.200702721

    15. [15]

      (14) Xu, H.; Gao, Q. M.; Guo, H. L.; Wang, H. L. Microporous and Mesoporous Materials 2010, 133, 106.  doi: 10.1016/j.micromeso.2010.04.021

    16. [16]

      (15) Tashima, D.; Yamamoto, E.; Kai, N.; Fujikawa, D.; Sakai, G.; Otsubo, M.; Kijima, T. Carbon 2011, 49, 4848.  doi: 10.1016/j.carbon.2011.07.005

    17. [17]

      (16) He, G.; Ji, X. L.; Nazar, L. Energy & Environmental Science 2011, 4, 2878.  doi: 10.1039/c1ee01219c

    18. [18]

      (17) Kwon, T. H.; Jung, S.; Kim, H. J.; Park, S.; Kim, S. J.; Huh, S. European Journal of Inorganic Chemistry 2009, 2811.

    19. [19]

      (18) Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A.; Zhao, D. Y. Chemistry of Materials 2006, 18, 4447.  doi: 10.1021/cm060921u

    20. [20]

      (19) Ryoo, R.; Joo, S. H.; Jun, S. Journal of Physical Chemistry B 1999, 103, 7743.  doi: 10.1021/jp991673a

    21. [21]

      (20) Lee, J.; Yoon, S.; Hyeon, T.; Oh, S. M.; Kim, K. B. Chemical Communications 1999, 2177.

    22. [22]

      (21) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Journal of the American Chemical Society 2000, 122, 10712.  doi: 10.1021/ja002261e

    23. [23]

      (22) Lee, J. S.; Joo, S. H.; Ryoo, R. Journal of the American Chemical Society 2002, 124, 1156.  doi: 10.1021/ja012333h

    24. [24]

      (23) Lu, A. H.; Schmidt, W.; Spliethoff, B.; Schüth, F. Advanced Materials 2003, 15, 1602.  doi: 10.1002/adma.200305176

    25. [25]

      (24) Pang, J. B.; Hu, Q. Y.; Wu, Z. W.; Hampsey, J. E.; He, J. B.; Lu, Y. F. Microporous and Mesoporous Materials 2004, 74, 73.  doi: 10.1016/j.micromeso.2004.06.009

    26. [26]

      (25) Wang, Y.; Yu, G.; Cai, B.; Zhu, Y. X.; Xie, Y. C. Acta Phys. -Chim. Sin.2011, 27, 729. [王羽, 魁罡, 蔡斌, 朱月香, 谢有畅. 物理化学学报, 2011, 27, 729.]

    27. [27]

        doi: 10.3866/PKU.WHXB20110321

    28. [28]

      (26) Wu, D. C.; Fu, R. W. Microporous and Mesoporous Materials 2006, 96, 115.  doi: 10.1016/j.micromeso.2006.06.022

    29. [29]

      (27) Choma, J.; rka, J.; Jaroniec, M.; Zawislak, A. Topics in Catalysis 2010, 53, 283.  doi: 10.1007/s11244-009-9407-x

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    17. [17]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(822)
  • Abstract views(2342)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return