Citation: LI Mi, LIU Lian-Qing, XI Ning, WANG Yue-Chao, DONG Zai-Li, XIAO Xiu-Bin, ZHANG Wei-Jing. Drug-Induced Changes of Topography and Elasticity in Living B Lymphoma Cells Based on Atomic Force Microscopy[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1502-1508. doi: 10.3866/PKU.WHXB201203201 shu

Drug-Induced Changes of Topography and Elasticity in Living B Lymphoma Cells Based on Atomic Force Microscopy

  • Received Date: 9 March 2012
    Available Online: 20 March 2012

    Fund Project: 国家自然科学基金(60904095, 61175103) (60904095, 61175103) 国家高技术研究发展计划项目(863) (2009AA03Z316) (863) (2009AA03Z316)

  • Atomic force microscopy (AFM) provides a means for characterizing the surface topography and biophysical properties of individual living cells under near-physiological conditions. However, owing to the lack of adequate cellular immobilization methods, AFM imaging of living, suspended mammalian cells is still a big challenge. In this paper, a method is presented for immobilizing individual living B lymphoma cells that combines mechanical trapping with pillar arrays and electrostatic adsorption with poly-L-lysine. In this way, the topography and elasticity changes of individual B lymphoma cells that were stimulated with different concentrations of Rituximab were observed and measured dynamically. When the cell is stimulated by 0.2 mg·mL-1 Rituximab for 2 h, the cell topography becomes more corrugated and Young's modulus decreases from 196 to 183 kPa. When the cell is stimulated by 0.5 mg·mL-1 Rituximab for 2 h, the cell topography changes more significantly and some tubercles appear, and Young's modulus decreases from 234 to 175 kPa. These results thus provide a unique insight into the effects of Rituximab on individual cells.
  • 加载中
    1. [1]

      (1) Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930.  doi: 10.1103/PhysRevLett.56.930

    2. [2]

      (2) Dufrene, Y. F. Nat. Rev. Microbiol. 2004, 2, 451.  doi: 10.1038/nrmicro905

    3. [3]

      (3) Muller, D. J.; Dufrene, Y. F. Nat. Nanotechnol. 2008, 3, 261.  doi: 10.1038/nnano.2008.100

    4. [4]

      (4) Lee, S.; Mandic, J.; Vliet, K. J. V. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9609.  doi: 10.1073/pnas.0702668104

    5. [5]

      (5) Cross, S. E.; Jin, Y. S.; Rao, J.; Gimzewski, J. K. Nat. Nanotechnol. 2007, 2, 780.  doi: 10.1038/nnano.2007.388

    6. [6]

      (6) Neuman, K. C.; Nagy, A. Nature Methods 2008, 5, 491.  doi: 10.1038/nmeth.1218

    7. [7]

      (7) Stewart, M. P.; Helenius, J.; Toyoda, Y.; Ramanathan, S. P.; Muller, D. J.; Hyman, A. A. Nature 2011, 469, 226.  doi: 10.1038/nature09642

    8. [8]

      (8) Uchihashi, T.; Iino, R.; Ando, T.; Noji, H. Science 2011, 333, 755.  doi: 10.1126/science.1205510

    9. [9]

      (9) Butt, H. J.; Wolff, E. K.; uld, S. A. C.; Northern, B. D.; Peterson, C. M.; Hansma, P. K. J. Struct. Biol. 1990, 105, 54.  doi: 10.1016/1047-8477(90)90098-W

    10. [10]

      (10) Chen, P. P.; Dong, H. T.; Chen, L.; Sun, Q. M.; Han, D. Chin. Sci. Bull. 2009, 54, 2410.  doi: 10.1007/s11434-009-0374-1

    11. [11]

      (11) Wu, Y.; Lu, H.; Cai, J.; He, X.; Hu, Y.; Zhao, H.; Wang, X. Nanoscale Res. Lett. 2009, 4, 942.  doi: 10.1007/s11671-009-9340-8

    12. [12]

      (12) Puntheeranurak, T.; Wildling, L.; Gruber, H. J.; Kinne, R. K. H.; Hinterdorfer, P. J. Cell Sci. 2006, 119, 2960.  doi: 10.1242/jcs.03035

    13. [13]

      (13) Kirat, K. E.; Burton, I.; Dupres, V.; Dufrene, Y. F. J. Microsc. 2005, 218, 199.  doi: 10.1111/j.1365-2818.2005.01480.x

    14. [14]

      (14) Lam, W. A.; Rosenbluth, M. J.; Fletcher, D. A. Blood 2007, 109, 3505.  doi: 10.1182/blood-2006-08-043570

    15. [15]

      (15) Ng, L.; Hung, H. H.; Sprunt, A.; Chubinskaya, S.; Ortiz, C.; Grodzinsky, A. J. Biomech. 2007, 40, 1011.  doi: 10.1016/j.jbiomech.2006.04.004

    16. [16]

      (16) Park, S.; Koch, D.; Cardenas, R.; Kas, J.; Shih, C. K. Biophys. J. 2005, 89, 4330.  doi: 10.1529/biophysj.104.053462

    17. [17]

      (17) Martens, J. C.; Radmacher, M. Pflugers Archiv-European Journal of Physiology 2008, 456, 95.  doi: 10.1007/s00424-007-0419-8

    18. [18]

      (18) Lulevich, V.; Yang, H.; Isseroff, R. R.; Liu, G. Ultramicroscopy 2010, 110, 1435.  doi: 10.1016/j.ultramic.2010.07.009

    19. [19]

      (19) Cai, X.; Yang, X.; Cai, J.; Wu, S.; Chen, Q. J. Phys. Chem. B 2010, 114, 3833.  doi: 10.1021/jp910682q

    20. [20]

      (20) Kirmizis, D.; Lo thetidis, S. Int. J. Nanomed. 2010, 5, 137.

    21. [21]

      (21) Leporatti, S.; Gerth, A.; Kohler, G.; Kohlstrunk, B.; Hauschildt, S.; Donath, E. FEBS Lett. 2006, 580, 450.  doi: 10.1016/j.febslet.2005.12.037

    22. [22]

      (22) Deng, Z.; Lulevich, V.; Liu, F.; Liu, G. J. Phys. Chem. B 2010, 114, 5971.  doi: 10.1021/jp9114546

    23. [23]

      (23) Muller, D. J.; Dufrene, Y. F. Trends Cell Biol. 2011, 21, 461.  doi: 10.1016/j.tcb.2011.04.008

    24. [24]

      (24) Muller, D. J.; Dufrene, Y. F. Curr. Biol. 2011, 21, R212.

    25. [25]

      (25) Li, M.; Liu, L. Q.; Xi, N.; Wang, Y. C.; Dong, Z. L.; Xiao, X. B.; Zhang, W. J. Chin. Sci. Bull. 2010, 55, 2188. [李密, 刘连庆, 席宁, 王越超, 董再励, 肖秀斌, 张伟京. 科学通报, 2010, 55, 2188.]  doi: 10.1360/972010-218

    26. [26]

      (26) Touhami, A.; Nysten, B.; Dufrene, Y. F. Langmuir 2003, 19, 4539.  doi: 10.1021/la034136x

    27. [27]

      (27) Cartron, G.; Watier, H.; lay, J.; Solal-Celigny, P. Blood 2004, 104, 2635.  doi: 10.1182/blood-2004-03-1110

    28. [28]

      (28) Bonavida, B. Oncogene 2007, 26, 3629.  doi: 10.1038/sj.onc.1210365

    29. [29]

      (29) Smith, M. R. Oncogene 2003, 22, 7359.  doi: 10.1038/sj.onc.1206939

    30. [30]

      (30) Hu, M.; Wang, J.; Zhao, H.; Dong, S.; Cai, J. J. Biomech. 2009, 42, 1513.  doi: 10.1016/j.jbiomech.2009.03.051

    31. [31]

      (31) Li, M.; Liu, L.; Xi, N.; Wang, Y.; Dong, Z.; Tabata, O.; Xiao, X.; Zhang, W. Biochem. Biophys. Res. Commu. 2011, 404, 689.  doi: 10.1016/j.bbrc.2010.12.043

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    3. [3]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    4. [4]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    5. [5]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(824)
  • Abstract views(2549)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return