Citation: KE Shan-Lin, KAN Cai-Xia, MO Bo, CONG Bo, ZHU Jie-Jun. Research Progress on the Optical Properties of ld Nanorods[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1275-1290. doi: 10.3866/PKU.WHXB201203162 shu

Research Progress on the Optical Properties of ld Nanorods

  • Received Date: 9 December 2011
    Available Online: 16 March 2012

    Fund Project: 国家自然科学基金(51032002)资助项目 (51032002)

  • ld nanorods exhibit unique and tunable surface plasmon resonance (SPR) derived optical properties in the ultraviolet-visible-near infrared (UV-Vis-NIR) region. The high stability, low biological toxicity, bright color, and versatility of ld nanorods have inspired an explosion of research interest in their properties and applications (which include roles in catalysis, data storage, and biomedicine). This paper presents a brief overview of current research progress on the optical properties of ld nanorods, including surface plasmon resonance, local field enhancement, plasmon coupling, fluorescence, and application outlook.
  • 加载中
    1. [1]

      (1) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732.  doi: 10.1126/science.1140484

    2. [2]

      (2) Sanvicens, N.; Marco, M. P. Trends Biotechnol. 2008, 26, 425.  doi: 10.1016/j.tibtech.2008.04.005

    3. [3]

      (3) Zijlstra, P.; Chon, J. W. M.; Gu, N. Nature 2009, 459, 410.  doi: 10.1038/nature08053

    4. [4]

      (4) Wang, F.; Li, C. H.; Sun L. D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C. H. J. Am. Chem. Soc. 2011, 133, 1106.  doi: 10.1021/ja1095733

    5. [5]

      (5) Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901.  doi: 10.1126/science.1066541

    6. [6]

      (6) Millstone, J. E.; Hurst, S. J.; Métraux, G. S.; Cutler, J. I.; Mirkin, C. A. Small 2009, 5, 646.

    7. [7]

      (7) Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Nanoscale 2011, 3, 1304.  doi: 10.1039/c0nr00804d

    8. [8]

      (8) Tao, A. R.; Habas, S.; Yang, P.D. Small 2008, 4, 310.  doi: 10.1002/smll.200701295

    9. [9]

      (9) Kan, C. X.; Zhu, X. G.; Wang, G. H. J. Phys. Chem. B 2006, 110, 4651.

    10. [10]

      (10) Li, C. C.; Sato, R.; Kanehara, M.; Zeng, H. B.; Bando, Y.; Teranishi, T. Angew. Chem. Int. Edit. 2009, 48, 6883.

    11. [11]

      (11) Naumov, I. I.; Li, Z. Y.; Bratkovsky, A. M. Appl. Phys. Lett. 2010, 96, 033105.  doi: 10.1063/1.3273859

    12. [12]

      (12) Sau, T. K.; Rogach, A. L. Adv. Mater. 2010, 22, 1781.

    13. [13]

      (13) Xiong, Y. J.; Chen, Y. J.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. Y. N ano Lett. 2005, 5, 1237.

    14. [14]

      (14) Larsson, E. M.; Langhammer, C.; Zoric, I.; Kasemo, B. Science 2009, 326, 1091.  doi: 10.1126/science.1176593

    15. [15]

      (15) Okamoto, H.; Imura, K. Prog. Surf. Sci. 2009, 84, 199.  doi: 10.1016/j.progsurf.2009.03.003

    16. [16]

      (16) Tirtha, S.; Basudeb, K. Solid State Sci. 2009, 11, 1044.  doi: 10.1016/j.solidstatesciences.2009.02.007

    17. [17]

      (17) Du,S.Y.; Li, Z. Y.Opt. Lett. 2010, 35, 3402.  doi: 10.1364/OL.35.003402

    18. [18]

      (18) Yang, Z.; Ni, W. H.; Kou, X. S.; Zhang, S. Z.; Sun, Z. H.; Sun, L. D.; Wang, J. F.; Yan, C. H. J. Phys. Chem. C 2008, 112, 18895.

    19. [19]

      (19) Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. ACS Nano 2009, 3, 744.  doi: 10.1021/nn900001q

    20. [20]

      (20) Chowdhury, M. H.; Ray, K.; Johnson, M. L.; Gray, S. K.; Pond, J.; Lakowicz, J. R. J. Phys. Chem. C 2010, 114, 7448.  doi: 10.1021/jp911229c

    21. [21]

      (21) Fang, Y.; Seong, N. H.; Dlott, D. D. Science 2008, 321, 388.  doi: 10.1126/science.1159499

    22. [22]

      (22) Yoon, I.; Kang, T.; Choi, W.; Kim, J.; Yoo, Y.; Joo, S. W.; Park, Q. H.; Ihee, H.; Kim, B. J. Am. Chem. Soc. 2009, 131, 758.  doi: 10.1021/ja807455s

    23. [23]

      (23) Hsieh, H. Y.; Xiao, J. L.; Lee, C. H.; Huang, T. W.; Yang, C. S.; Wang, P. C.; Tseng, F. G. J. Phys. Chem. C 2011, 115, 16258

    24. [24]

      (24) Shimada, T.; Imura, K.; Hossain, M. K.; Okamoto, H. M.; Kitajima, M. J. Phys. Chem. C 2008, 112, 4033.  doi: 10.1021/jp8004508

    25. [25]

      (25) Nakamura, T; Hirata, N; Sekino, Y; Nagaoka, S; Nakajima, A. J. Phys. Chem. C 2010, 114, 16270.

    26. [26]

      (26) Wissert, M. D; Ilin, K. S; Siegel, M.; Lemmer, U.; Eisler, H. J. Nano Lett. 2010, 10, 4161.  doi: 10.1021/nl102450x

    27. [27]

      (27) Celebrano, M.; Biagioni, P.; Finazzi, M.; Duò, L.; Zavelani-Rossi, M.; Polli, D.; Labardi, M.; Allegrini, M.; Grand, J.; Adam, P.M.; Royer, P.; Cerullo, G. Phys. Stat. Sol. C 2008, 5, 2657.  doi: 10.1002/pssc.200779121

    28. [28]

      (28) Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C. Nano Lett. 2011, 11, 61.  doi: 10.1021/nl102751m

    29. [29]

      (29) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212.  doi: 10.1021/jp984796o

    30. [30]

      (30) Kelly, K. L; Coronado, E; Zhao, L. L; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.  doi: 10.1021/jp026731y

    31. [31]

      (31) Zoric, I.; Zach, M.; Kasemo, B.; Langhammer, C. ACS Nano 2011, 5, 2535.  doi: 10.1021/nn102166t

    32. [32]

      (32) Quinten, M. Optical Properties of Nanoparticle Systems: Mie and Beyond; Wiley-VCH Verlag & Co. KgaA: Weinheim, 2011; pp 316-377.

    33. [33]

      (33) Bohern C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley-VCH Verlag &Co.: KgaA:Weinheim, 1983.

    34. [34]

      (34) Wood, R. W. Philos. Mags. 1902, 4, 396

    35. [35]

      (35) Mie. G. Ann. Phys. 1908, 25, 377.

    36. [36]

      (36) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.  doi: 10.1021/jp9917648

    37. [37]

      (37) Sinzig, J.; Quinten, M. Appl. Phys. A 1994, 58, 157.  doi: 10.1007/BF00332172

    38. [38]

      (38) Draine, B. T.; Flatau, P. J. J. Opt. Soc. Am. A 1994, 11, 1491.  doi: 10.1364/JOSAA.11.001491

    39. [39]

      (39) Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138.  doi: 10.1021/jp0507288

    40. [40]

      (40) Kan, C. X.; Cai, W. P.; Li, C. C.; Fu, G. H.; Zhang, L. D. J. Appl. Phys.2004, 96, 5727.  doi: 10.1063/1.1801158

    41. [41]

      (41) Osborn, J. A. Phys. Rev. 1945, 67, 351.

    42. [42]

      (42) Johnson P. B.; Christy, R. W. Phys. Rev. B 1972, 6, 4370.  doi: 10.1103/PhysRevB.6.4370

    43. [43]

      (43) Yang, W. H.; Schatz, G. C.; Duyne, R. P. V. J. Chem. Phys. 1995, 103, 869.  doi: 10.1063/1.469787

    44. [44]

      (44) Yee, K. IEEE Trans. Antennas Propag. 1966, 14, 302.  doi: 10.1109/TAP.1966.1138693

    45. [45]

      (45) Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797.  doi: 10.1021/cr0680282

    46. [46]

      (46) MurPhy, C. J.; le, A. M.; Stone, J. W.; Siseo, P. N.; Alkilany, A. M.; ldsmith, E. C.; Baxter, S. C. Accounts Chem. Res. 2008, 41, 1721.  doi: 10.1021/ar800035u

    47. [47]

      (47) Li, H. C.; Kan, C. X.; Yi, Z. G.; Ding, X. L.; Cao, Y. L.; Zhu, J. J. J. Nanomater.2010, doi:10.1155/2010/96271.

    48. [48]

      (48) Novo, C.; Funston, A. M.; Mulvaney, P. Nat. Nanotechnol. 2008, 3, 598.  doi: 10.1038/nnano.2008.246

    49. [49]

      (49) Manikandan, D.; Mohan, S.; Magudapathy, P.; Nair, K. G. M. Physica B 2003, 325, 86.  doi: 10.1016/S0921-4526(02)01453-9

    50. [50]

      (50) Marinakos, S. M.; Chen, S. H.; Chilkoti, A. Anal Chem. 2007, 79, 5278.  doi: 10.1021/ac0706527

    51. [51]

      (51) Li, J. F.; Liu, S. Y.; Liu, Y.; Zhou, F.; Li, Z. Y. Appl. Phys. Lett. 2010, 96, 263103.  doi: 10.1063/1.3458693

    52. [52]

      (52) Nie, S.; Emory, S. R. Science 1997, 275, 1102.  doi: 10.1126/science.275.5303.1102

    53. [53]

      (53) LeRu, E.; Meyer, M.; Etche in, P. J. Phys. Chem. B 2006, 110, 1944.  doi: 10.1021/jp054732v

    54. [54]

      (54) Kim, S.; Jin, J. H.; Kim, Y. J.; Park, I. Y.; Kim, Y.; Kim, S. W. Nature 2008, 453, 757.

    55. [55]

      (55) Ausman, L. K.; Schatz, G. C. J. Chem. Phys. 2009, 131, 084708.  doi: 10.1063/1.3211969

    56. [56]

      (56) Mayer, K. M.; Hao, F.; Lee, S.; Nordlander, P.; Hafner, J. H. Nanotechnology 2010, 21, 255503.  doi: 10.1088/0957-4484/21/25/255503

    57. [57]

      (57) Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Phys. Chem. Chem. Phys. 2011, 13, 149.

    58. [58]

      (58) Kleinman, S. L.; Ringe, E.; Valley, N.; Wustholz, K. L.; Phillips, E.; Scheidt, K. A.; Schatz, G. C.; Van Duyne, R. P. J. Am. Chem. Soc. 2011, 133, 4115.  doi: 10.1021/ja110964d

    59. [59]

      (59) Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463.  doi: 10.1021/jp0257449

    60. [60]

      (60) Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser,T. R.; Nordlander, P.; Halas, N. J. Nano Lett. 2005, 5, 1569.

    61. [61]

      (61) Doering, W. E.; Nie, S. J. Phys. Chem. B 2002, 106, 311.  doi: 10.1021/jp011730b

    62. [62]

      (62) Lombardi, J. R.; Birke, R. L. Accounts Chem. Res. 2009, 42, 734.

    63. [63]

      (63) Hao, E.; Schatz, G. C. J. Chem. Phys. 2004, 120, 357.  doi: 10.1063/1.1629280

    64. [64]

      (64) Schatz, G. C.; Young, M. A.; Van-Duyne, R. P. Top. Appl. Phys. 2006, 103, 19.  doi: 10.1007/3-540-33567-6_2

    65. [65]

      (65) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99,2957.  doi: 10.1021/cr980133r

    66. [66]

      (66) Nikoobakht, B.; Wang, J. P.; El-Sayed. M. A. Chem. Phys. Lett. 2002, 366, 17.

    67. [67]

      (67) Nikoobakht, B.; El-Sayed.M. A. J. Phys. Chem. A 2003, 107, 3372.  doi: 10.1021/jp026770+

    68. [68]

      (68) Murphy, C. J.; le, A. M.; Hunyadi, S. E.; Orendorff, C. J. Inorg. Chem. 2006, 45, 7544.  doi: 10.1021/ic0519382

    69. [69]

      (69) Li, Z. Y.; Xia, Y. N. Nano Lett. 2010, 10, 243

    70. [70]

      (70) Brown, L. V.; Sobhani, H.; Lassiter, J. B.; Nordlander, P.; Halas, N. J. ACS Nano 2010, 4, 819.  doi: 10.1021/nn9017312

    71. [71]

      (71) Slaughter, L. S.; Wu, Y. P.; Willingham, B. A.; Nordlander, P.; Link, S. ACS Nano 2010, 4,4657.  doi: 10.1021/nn1011144

    72. [72]

      (72) Encina, E. R.; Coronado, E. A. J. Phys. Chem. C 2010, 114, 16278

    73. [73]

      (73) Feng, X. M.; Ruan, F. X.; Hong, R. J.; Ye, J. S.; Hu, J. Q.; Hu, G. Q.; Yang, Z. L. Langmuir 2011, 27, 2204.

    74. [74]

      (74) Barrow, S. J.; Funston, A. M.; mez, D. E.; Davis, T. J.; Mulvaney, P. Nano Lett. 2011, 11, 4180.  doi: 10.1021/nl202080a

    75. [75]

      (75) Manjavacas, A.; de Abajo F. J. G.; Nordlander, P. Nano Lett. 2011, 11, 2318.  doi: 10.1021/nl200579f

    76. [76]

      (76) Wang, Z. L. Progress in Physics 2009, 29, 287. [王振林. 物理学进展, 2009, 29, 287.]

    77. [77]

      (77) Koh, A. L.; Fernandez-Domínguez, A. I.; McComb, D. W.; Maier, S. A.; Yang, J. K. W. Nano Lett. 2011, 11, 1323.  doi: 10.1021/nl104410t

    78. [78]

      (78) Jain, P. K.; El-Sayed, M. A. Nano Lett. 2007, 7, 2854.  doi: 10.1021/nl071496m

    79. [79]

      (79) Jain, P. K.; El-Sayed, M. A. J. Phys. Chem. C 2008, 112, 4954.  doi: 10.1021/jp7120356

    80. [80]

      (80) Encina, E. R.; Coronado, E. A. J. Phys. Chem. C 2010, 114, 3918

    81. [81]

      (81) Sheikholeslami, S. N.; Garcia-Etxarri, A.; Dionne, J. A. Nano Lett.2011, 11, 3927.  doi: 10.1021/nl202143j

    82. [82]

      (82) Jain, P. K.; Eustis, S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 18243.  doi: 10.1021/jp063879z

    83. [83]

      (83) Funston, A. M.; Novo, C.; Davis,T. J.; Mulvaney, P. Nano Lett. 2009, 9, 1651.  doi: 10.1021/nl900034v

    84. [84]

      (84) Tabor, C.; Van Haute, D.; El-Sayed, M. A. ACS Nano 2009, 3, 3670.  doi: 10.1021/nn900779f

    85. [85]

      (85) Shao, L.; Woo, K. C.; Chen, H. J.; Jin, Z.; Wang, J. F.; Lin, H. Q. ACS Nano 2010, 4, 3053.  doi: 10.1021/nn100180d

    86. [86]

      (86) Juluri, B. K.; Chaturvedi, N.; Hao, Q. Z.; Lu, M. Q.; Vele l, D.; Jensen, L.; Huang, T. J. ACS Nano 2011, 5, 5838.  doi: 10.1021/nn201595x

    87. [87]

      (87) Alegret, J.; Rindzevicius, T.; Pakizeh, T.; Alaverdyan,Y.; Gunnarsson, L.; Kall. M. J. Phys. Chem. C 2008, 112, 14313.  doi: 10.1021/jp804505k

    88. [88]

      (88) Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; Van-Dorpe, P.; Nordlander, P.; Maier, S. A. ACS Nano 2010, 4, 1664.  doi: 10.1021/nn901580r

    89. [89]

      (89) Liu, H.; Liu, Y. M.; Li, T.; Wang, S. M.; Zhu, S. N.; Zhang, X. Phys. Status Solidi B 2009, 246, 1397.  doi: 10.1002/pssb.200844414

    90. [90]

      (90) Chen, H. Y.; He, C. L.; Wang, C. Y.; Lin, M. H.; Mitsui, D.; Eguchi, M.; Teranishi, T.; Gwo S. ACS Nano 2011, 5, 8223.  doi: 10.1021/nn2029007

    91. [91]

      (91) Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayer yz, I. D.; Rabin, O. ACS Nano 2010, 4, 5763.  doi: 10.1021/nn101484a

    92. [92]

      (92) Lassiter, J. B.; Aizpurua, J.; Hernandez, L. I.; Brandl, D. W.; Romero, I.; Lal, S.; Hafner, J. H.; Nordlander, P.; Halas, N. J. Nano Lett. 2008, 8, 1212.  doi: 10.1021/nl080271o

    93. [93]

      (93) Wang, L.; Clavero, C.; Huba, Z.; Carroll, K. J.; Carpenter, E. E.; Gu, D. F.; Lukaszew, R. A. Nano Lett. 2011, 11, 1237.  doi: 10.1021/nl1042243

    94. [94]

      (94) Fofang, N. T.; Grady, N. K.; Fan, Z. Y.; vorov, A. O.; Halas, N. J. Nano Lett. 2011, 11, 1556.  doi: 10.1021/nl104352j

    95. [95]

      (95) Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Nat. Nanotechnol. 2011, 6, 452.  doi: 10.1038/nnano.2011.79

    96. [96]

      (96) Mukherjee, S.; Sobhani, H.; Lassiter, J. B.; Bardhan, R.; Nordlander, P.; Halas, N. J. Nano Lett. 2010,10, 2694.  doi: 10.1021/nl1016392

    97. [97]

      (97) Xu, H.Q.; Li, H. J.; Liu, Z. M.; Xie, S. X.; Zhou, X.; Peng, X.; Xu, X. K. J. Opt. Soc. Am. A 2011, 28, 1662.  doi: 10.1364/JOSAA.28.001662

    98. [98]

      (98) Tabor, C.; Murali, R.; Mahmoud, M.; El-Saye, M. A. J. Phys. Chem. A 2009, 113, 1946.  doi: 10.1021/jp807904s

    99. [99]

      (99) Yang, S. C.; Kobori, H.; He, C. L.; Lin, M. H.; Chen, H. Y.; Li, C. C.; Kanehara, M.; Teranishi, T.; Gwo, S. Nano Lett. 2010, 10, 632.  doi: 10.1021/nl903693v

    100. [100]

      (100) Yin, P. G.; You, T. T.; Tan, E. Z.; Li, J.; Lang, X. F.; Jiang, L.; Guo, L. J. Phys. Chem. C 2011, 115, 18061.

    101. [101]

      (101) Fang, Z. Y.; Cai, J. Y.; Yan, Z. B.; Nordlander, P.; Halas, N. J.; Zhu, X. Nano Lett. 2011, 11, 4475.  doi: 10.1021/nl202804y

    102. [102]

      (102) Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Nano Lett.2007, 7, 729.  doi: 10.1021/nl062969c

    103. [103]

      (103) Aydin, K.; Pryce, I. M.; Atwater, H. A. Opt. Express 2010, 18, 13407.  doi: 10.1364/OE.18.013407

    104. [104]

      (104) Bao, K.; Sobhani, H.; Nordlander, P. Chin. Sci. Bull. 2010, 55, 2629.

    105. [105]

      (105) Marhaba, S.; Bachelier. G.; Bonnet. C.; Broyer, M.; Cottancin, E.; Grillet, N.; Lerme, J.; Vialle, J. L.; Pellarin. M. J. Phys. Chem. C 2009, 113, 4349.  doi: 10.1021/jp810405y

    106. [106]

      (106) Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. R. Opt. Commun. 2003, 220, 137.  doi: 10.1016/S0030-4018(03)01357-9

    107. [107]

      (107) Zuloaga, J.; Nordlander, P. Nano Lett. 2011, 11, 1280.  doi: 10.1021/nl1043242

    108. [108]

      (108) Sheikholeslami, S.; Jun, Y. W.; Jain, P. K. Alivisatos, A. P. Nano Lett. 2010, 10, 2655.  doi: 10.1021/nl101380f

    109. [109]

      (109) Pena-Rodriguez, O.; Pal, U.; Campoy-Quiles, M.; Rodriguez-Fernandez, L.; Garriga, M; Alonso, M. I . J. Phys. Chem. C 2011, 115, 6410.  doi: 10.1021/jp200495x

    110. [110]

      (110) Encina, E. R.; Coronado, E. A. J. Phys. Chem. C 2011, 115, 15908.  doi: 10.1021/jp205158w

    111. [111]

      (111) Chowdhury, M. H.; Chakraborty, S.; Lakowicz, J. R.; Ray, K. J. Phys. Chem. C 2011, 115, 6879.

    112. [112]

      (112) Yao, H. M.; Li, Z.; ng, Q. H. Sci. China Ser. G 2009, 52, 1129.

    113. [113]

      (113) Maier, S. A. Nat. Mater. 2003, 2, 229.  doi: 10.1038/nmat852

    114. [114]

      (114) Kawata, S.; Ono, A.; Verma, P. Nat. Photonics 2008, 2, 438.  doi: 10.1038/nphoton.2008.103

    115. [115]

      (115) Ming, T.; Zhao, L.; Xiao, M.; Wang, J. F. Small 2010, 6, 2514.  doi: 10.1002/smll.201000920

    116. [116]

      (116) Imura, K.; Nagahara, T.; Okamoto, H. J. Am. Chem. Soc. 2004, 126, 12730.  doi: 10.1021/ja047836c

    117. [117]

      (117) Eustis, S.; El-Sayed, M. J. Phys. Chem. B 2005, 109, 16350.  doi: 10.1021/jp052951a

    118. [118]

      (118) Li, C. Z.; Male, K. B., Hrapovic, S.; Luong, J. H. T. Chem. Commun. 2005, 3924.

    119. [119]

      (119) Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A. Chem. Phys. Lett. 2000, 317,517.  doi: 10.1016/S0009-2614(99)01414-1

    120. [120]

      (120) Zheng, J.; Zhang, C. W.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 0774021.

    121. [121]

      (121) Zhu, J.; Wang, Y. C.; Yan, S. N. Chin. Phys. Lett. 2004, 21, 559.  doi: 10.1088/0256-307X/21/3/040

    122. [122]

      (122) Sun, G. M.; Yang, P. H.; Sun, J. H.; Cai, J. Y. Chin. J. Lumin. 2011, 32, 636. [孙桂敏, 杨培慧, 孙俊环, 蔡继业. 发光学报, 2011, 32, 636.]  doi: 10.3788/fgxb20113206.0636

    123. [123]

      (123) Lakowicz, J. R.; Geddes, C. D.; Gryczynski, I .; Malicka, J.; Gryczynski, Z.; Aslan, K.; Lukomska, J.; Matveeva, E.; Zhang, J. A.; Badugu, R.; Huang, J. J. Fluorescence 2004, 14, 425.  doi: 10.1023/B:JOFL.0000031824.48401.5c

    124. [124]

      (124) Thomas, K. G.; Kamat. P. V. Accounts Chem. Res. 2003, 36, 888.  doi: 10.1021/ar030030h

    125. [125]

      (125) Wenger, J.; Gerard, D.; Dintinger, J.; Mahboub, O.; Bonod, N.; Popov, E.; Ebbesen, T. W.; Rigneault, H. Opt. Express 2008, 16, 3008.  doi: 10.1364/OE.16.003008

    126. [126]

      (126) Li, X.; Kao, F. J.; Chuang, C. C.; He, S. L. Opt. Express 2010, 18, 11335.  doi: 10.1364/OE.18.011335

    127. [127]

      (127) Ming, T.; Zhao, L.; Yang, Z.; Chen, H. J.; Sun, L. D.; Wang, J. F.; Yan, C. H. Nano Lett. 2009, 9, 3896.  doi: 10.1021/nl902095q

    128. [128]

      (128) Qian, Q.; Jiang, L.; Cai, F. H.; Wang, D.; He, S. L. Biomaterials 2011, 32, 1601.  doi: 10.1016/j.biomaterials.2010.10.058

    129. [129]

      (129) Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Nano Lett. 2007, 7, 941.  doi: 10.1021/nl062962v

    130. [130]

      (130) Wang, C. G.; Chen, J. J.; Talavage, T.; Irudayaraj, J. Angew Chem 2009, 121, 2797.  doi: 10.1002/ange.200805282

    131. [131]

      (131) Wang, C. G.; Irudayaraj, J. Small 2010, 6, 283.  doi: 10.1002/smll.200901596

    132. [132]

      (132) Guo, H. Y.; Lu, L. H.; Wu, C.; Pan, J. G.; Hu, J. W. Acta Chim. Sin. 2009, 67, 1603. [郭红燕, 芦玲慧, 吴超, 潘建高, 胡家文. 化学学报, 2009, 67, 1603.]

    133. [133]

      (133) He, W.; Huang, C. Z.; Li, Y. F.; Xie, J. P.; Yang, R. G.; Zhou, P. F.; Wang, J. Anal.Chem. 2008, 80, 8424.  doi: 10.1021/ac801005d

    134. [134]

      (134) Huang, X.; El-Sayed, I. H; Qian, W; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.  doi: 10.1021/ja057254a

    135. [135]

      (135) Mu, X.; Wu, C. L.; Lai, J. P.; Chen, J. B.; Zheng, J. S.; Li, C.; Zhao,Y. B. Chin. Sci. Bull. 2011, 56, 3242.  doi: 10.1007/s11434-011-4727-1

    136. [136]

      (136) Cho, E. B.; Volkov, D. O.; Sokolov, I. Adv. Funct. Mater. 2011, 21, 3129.  doi: --- Either first page or author must be supplied.

    137. [137]

      (137) Sui, S. F.; Xiao, C. D.; Yang, J. Surface Plasmon Resonance biosensor, 1st ed.; Scientific and Technical Publishers: Shang hai 2008; pp 1-44. [隋森芳, 肖才德, 杨军著,表面等离子体激元共振生物传感器, 第一版; 上海:科学技术出版社, 2008: 1-44.]

    138. [138]

      (138) Liedberg, B; Nylander, C; Lundstrom, I. Sensors and Actuators 1983, 4, 299.  doi: 10.1016/0250-6874(83)85036-7

    139. [139]

      (139) Haes, A. J.; Zou, S. L.; Schatz, G. C.; Van-Duyn, R. P. J. Phys. Chem. B 2004, 108, 109.  doi: 10.1021/jp0361327

    140. [140]

      (140) McFarland, A. D.; Van-Duyne, R. P. Nano Lett. 2003, 3, 1057.  doi: 10.1021/nl034372s

    141. [141]

      (141) Parab, H. J.; Jung, C.; Lee, J. H.; Park, H. G. Biosens.Bioelectron 2010, 26, 667.  doi: 10.1016/j.bios.2010.06.067

    142. [142]

      (142) Wang, X. H.; Li, Y. A.; Wang, H. F.; Fu, Q. X.; Peng, J. C.; Wang, Y. L.; Du, J. A.; Zhou, Y.; Zhan, L. S. Biosens. Bioelectron 2010, 26, 404.  doi: 10.1016/j.bios.2010.07.121

    143. [143]

      (143) Li, Y.; Zhong, J. G.; Zhang,Y. L. Chin. J. Lasers 2006, 33, 1143. [李莹, 钟金钢, 张永林,中国激光, 2006, 33, 1143.]

    144. [144]

      (144) Cao, Y. L. Ding, X. L. Li, H. C.; Yi, Z. G.; Wang, X. F.; Zhu, J. J.; Kan, C. X. Acta Phys. -Chim. Sin. 2011, 27, 1273. [曹艳丽, 丁孝龙, 李红臣, 伊兆广, 王祥夫, 朱杰君, 阚彩侠. 物理化学学报, 2011, 27, 1273.]

    145. [145]

      (145) Pendry, J. B.; Holden, A. J.; Robbins, D. J.; Stewart, W. J. IEEE Trans.Microwave Theory Tech. 1999, 47, 2075.  doi: 10.1109/22.798002

    146. [146]

      (146) Shelby, R. A.; Smith, D. R.; Schultz, S. Science 2001, 292, 77.  doi: 10.1126/science.1058847

    147. [147]

      (147) Zhang, S.; Fan, W. J.; Minhas, B. K.; Frauenglass, A.; Malloy, K. J.; Brueck, S. R. J. Phys. Rev. Lett. 2005, 94, 037402.  doi: 10.1103/PhysRevLett.94.037402

    148. [148]

      (148) Xiao, S. M.; Drachev, V. P.; Kildishev, A. V.; Ni, X. J.; Chettiar, U. K.; Yuan, H. K.; Shalaev, V. M. Nature 2010, 466, 735.  doi: 10.1038/nature09278

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    7. [7]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    18. [18]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    19. [19]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(3084)
  • Abstract views(4954)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return