Citation: CHANG Meng-Lei, LI Xin-Jun. Fabrication of Nanosheet/Nestlike Nanoarray Hierarchical TiO2 Film for Dye-Sensitized Solar Cell[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1368-1372. doi: 10.3866/PKU.WHXB201203161
-
A hierarchical configuration of TiO2 nanoarray film, comprising a nestlike TiO2 nanoarray layer integrated with a nanosheet network overlayer, was constructed. The hierarchical TiO2 film was obtained by the post-hydrothermal treatment with NaOH solution on hydrothermally synthesized TiO2-derived nanostructured arrays grown on fluorine-doped tin oxide substrate (FTO). The TiO2 films were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy, and absorbance spectroscopy. FE-SEM shows that the hierarchical TiO2 film with a thickness of 1.5 μm is composed of a nanosheet overlayer (~0.2 μm height) and the nestlike nanoarray layer (~1.3 μm height). XRD patterns display that the TiO2 films have pure anatase phase structure. UV-Vis spectra reveal enhanced light scattering and dye adsorption ability of the hierarchical TiO2 film. For the dye-sensitized solar cell (DSSC) based on the nanosheet/nestlike nanoarray hierarchical TiO2 film, a short-circuit current (Jsc) of 7.79 mA·cm-2, open-circuit voltage (Voc) of 0.80 V, fill factor (FF) of 0.40, and photoelectric conversion efficiency (η) of 2.48% are achieved. Within the dye-sensitized solar cell, the photoelectric conversion efficiency of the hierarchical TiO2 film was nearly ten times higher than that of nanostructured array film.
-
-
[1]
(1) Oregan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Yu, J. G.; Fan, J. J.; Cheng, B. J. Power Sources 2011, 196, 7891. doi: 10.1016/j.jpowsour.2011.05.014
-
[3]
(3) Santa-Nokki, H.; Kallioinen, J.; Kololuoma, T.; Tuboltsev, V.; Korppi-Tommola, J. J. Photoch. Photobiol. A 2006, 182, 187. doi: 10.1016/j.jphotochem.2006.02.011
-
[4]
(4) Wang, W. L.; Lin, H.; Zhang, L. Z.; Li, X.; Cui, B.; Li, J. B. Acta Phys. -Chim. Sin. 2010, 26, 1249. [汪文立, 林红, 张罗正, 李鑫, 崔柏, 李建保. 物理化学学报, 2010, 26, 1249.]
-
[5]
(5) Wang, H. E.; Zheng, L. X.; Liu, C. P.; Liu, Y. K.; Luan, C. Y.; Cheng, H.; Li, Y. Y.; Martinu, L.; Zapien, J. A.; Bello, I. J. Phys. Chem. C 2011, 115, 10419. doi: 10.1021/jp2011588
-
[6]
(6) Du Pasquier, A.; Chen, H. H.; Lu, Y. C. Appl. Phys. Lett. 2006, 89.
-
[7]
(7) Dong, X.; Tao, J.; Li, Y. Y.; Wang, T.; Zhu, H. Acta Phys. -Chim. Sin. 2009, 25, 1874. [董祥, 陶杰, 李莹滢, 汪涛, 朱宏. 物理化学学报, 2009, 25, 1874.]
-
[8]
(8) Zhao, L.; Yu, J. G.; Fan, J. J.; Zhai, P. C.; Wang, S. M. Electrochem. Commun. 2009, 11, 2052. doi: 10.1016/j.elecom.2009.08.050
-
[9]
(9) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Letters 2006, 6, 215. doi: 10.1021/nl052099j
-
[10]
(10) Sauvage, F.; Di Fonzo, F.; Bassi, A. L.; Casari, C. S.; Russo, V.; Divitini, G.; Ducati, C.; Bottani, C. E.; Comte, P.; Gräetzel, M. Nano Letters 2010, 10, 2562. doi: 10.1021/nl101198b
-
[11]
(11) Zeng, Q. H.; Wu, L. Z.; Zhang, Y.; Qi, B.; Zhi, J. F. Scripta Mater 2010, 62, 810. doi: 10.1016/j.scriptamat.2010.01.054
-
[12]
(12) Li, H. H.; Chen, R. F.; Ma, Z.; Zhang, S. L.; An, Z. F.; Huang, W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢, 陈润锋, 马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27, 1017.]
-
[13]
(13) Zhang, Q. F.; Chou, T. R.; Russo, B.; Jenekhe, S. A.; Cao, G. Z., Angew. Chem. Int. Edit. 2008, 47, 2402. doi: 10.1002/anie.200704919
-
[14]
(14) Yu, H.; Tian, B. Z.; Zhang, J. L. Chem. Eur. J. 2011, 17, 5499. doi: 10.1002/chem.201003437
-
[15]
(15) Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G. Advanced Materials 2008, 20, 195. doi: 10.1002/adma.200700840
-
[16]
(16) Liu, R. H.; Zhang, S.; Xia, X.Y.; Yun, D. Q.; Bian, Z. Q.; Zhao, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1701. [刘润花, 张森, 夏新元, 云大钦, 卞祖强, 赵永亮. 物理化学学报, 2011, 27, 1701.]
-
[17]
(17) Kang, S. H.; Kim, J. Y.; Kim, H. S.; Koh, H. D.; Lee, J. S.; Sung, Y. E. J. Photochem. Photobiol. A 2008, 200, 294. doi: 10.1016/j.jphotochem.2008.08.010
-
[18]
(18) Durr, M.; Bamedi, A.; Yasuda, A.; Nelles, G. Appl. Phys. Lett. 2004, 84, 3397. doi: 10.1063/1.1723685
-
[19]
(19) Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coordin. Chem. Rev. 2004, 248, 1381. doi: 10.1016/j.ccr.2004.03.006
-
[20]
(20) Qiu, Y. C.; Chen, W.; Yang, S. H. Angew. Chem. Int. Ed. 2010, 49, 3675. doi: 10.1002/anie.200906933
-
[21]
(21) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063
-
[22]
(22) Rao, F.; Song, Z. T.; ng, Y. F.; Wu, L. C.; Feng, S. L.; Chen, B. Nanotechnology 2008, 19, 445706. doi: 10.1088/0957-4484/19/44/445706
-
[1]
-
-
[1]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[2]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[3]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[6]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[7]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[8]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[9]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[10]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[11]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[12]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[13]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[14]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[15]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[16]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[17]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[18]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[19]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[20]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[1]
Metrics
- PDF Downloads(1427)
- Abstract views(3175)
- HTML views(9)