Citation: ZHANG Xiao, YANG Rong, WANG Chen, HENG Cheng-Lin. Cell Biocompatibility of Functionalized Graphene Oxide[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1520-1524. doi: 10.3866/PKU.WHXB201203131 shu

Cell Biocompatibility of Functionalized Graphene Oxide

  • Received Date: 25 November 2011
    Available Online: 13 March 2012

    Fund Project: 国家自然科学基金(20911130229, 21073047) (20911130229, 21073047)中国科学院知识创新工程重要方向项目(KJCX2.YW.M15)资助 (KJCX2.YW.M15)

  • We report on synthesis of nanoscale graphene oxide (N ) by modified Hummers’method. Synthesized N particles were surface functionalized by attaching carboxylic acid and polyethylene glycol groups to render them soluble in cell culture medium. The structures and properties of functionalized N were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and zeta potential analyzer. Cell viability studies show that PEG-modified N particles are highly soluble and incur almost no cytotoxicity to A549 cells, which suggest a great potential for the use of N in various biomedical applications.
  • 加载中
    1. [1]

      (1) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  10.1038/nmat1849

    2. [2]

      (2) Rozhkov, A. V.; Giavaras, G.; Bliokh, Y. P.; Freilikher, V.; Nori, F. Phys. Rep. 2011, 503, 77.  10.1016/j.physrep.2011.02.002

    3. [3]

      (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  10.1126/science.1102896

    4. [4]

      (4) Xu, D.; Zhou, N. L.; Shen, J. Chem. J. Chin. U. 2010, 31 (12), 2354. [徐东, 周宁琳, 沈健. 高等学校化学学报, 2010, 31 (12), 2354.]

    5. [5]

      (5) Gu, X. G.; Yang, G.; Zhang, G. X.; Zhang, D. Q.; Zhu, D. B. ACS Appl. Mat. Interfaces 2011, 3, 1175.  10.1021/am2000104

    6. [6]

      (6) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535.

    7. [7]

      (7) Zhang, Q.; He, Y. Q.; Chen, X. G.; Hu, D. H.; Li, L. L.; Yi, T. Chin. Sci. Bull. 2010, 55, 620. [张琼, 贺蕴秋, 陈小刚, 胡栋虎, 李林江, 尹婷. 科学通报, 2010, 55, 620.]

    8. [8]

      (8) Liu, Y.; Yu, D. S.; Zeng, C.; Miao Z. C.; Dai, L. M. Langmuir 2010, 26, 6158.  10.1021/la100886x

    9. [9]

      (9) Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, P. ACS Appl. Mat. Interfaces 2010, 2, 2521.  10.1021/am100293r

    10. [10]

      (10) Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Zhang, Z. J. Small 2010, 4, 537.

    11. [11]

      (11) Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S. J. Phys. Chem. C 2008, 112, 17554.  10.1021/jp806751k

    12. [12]

      (12) Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Nano Lett. 2010, 10, 3318.  10.1021/nl100996u

    13. [13]

      (13) Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E.; Wang, Y. W.; Cao, A.; Liu, Y. F.; Wang, H. F. Toxicol. Lett. 2011, 200, 201.  10.1016/j.toxlet.2010.11.016

    14. [14]

      (14) Zhang, S.; Yang, K.; Feng, L. Z.; Liu, Z. Carbon, 2011, 49, 4040.  10.1016/j.carbon.2011.05.056

    15. [15]

      (15) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457.  10.1038/nature06016

    16. [16]

      (16) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  10.1038/nature04969

    17. [17]

      (17) Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.  10.1038/nnano.2007.451

    18. [18]

      (18) Hummers, Jr. W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  10.1021/ja01539a017

    19. [19]

      (19)Hermanson, G. T. Bioconjugate techniques. http://www.sciencedirect.com/science/ book/9780123705013

    20. [20]

      (20) Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Adv. Mater 2008, 20, 4490.  10.1002/adma.200801306

    21. [21]

      (21) Rana, V. K.; Choi, M. C.; Kong, J. Y.; Kim, G. Y.; Kim, M. J.; Kim, S. H.; Mishra, S.; Singh, R. P.; Ha, C. S. Macromol. Mater. Eng. 2011, 296,131.  10.1002/mame.201000307

    22. [22]

      (22) Wang, G. X; Wang, B.; Park, J.; Yang, J.; Shen, X. P.; Yao, J. Carbon 2009, 47, 68.  10.1016/j.carbon.2008.09.002

    23. [23]

      (23) Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Langmuir 2009, 25, 12030.  10.1021/la903265p

    24. [24]

      (24) Si, Y. C.; Samulski, E. T. Nano Lett. 2008, 8, 1679.  10.1021/nl080604h

    25. [25]

      (25) Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. J. Am. Chem. Soc. 2008, 130, 10876.  10.1021/ja803688x

    26. [26]

      (26) Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; odwin, A.; Zaric, S.; Dai, H. J. Nano Res. 2008, 1, 203.  10.1007/s12274-008-8021-8

    27. [27]

      (27) Nguyen, T. T. T.; Tran, E.; Nguyen, T. H.; Do, P. T.; Huynh, T. H.; Huynh, H. Carcin. 2004, 25, 647.

    28. [28]

      (28) Wu, H. H.; Yang, R.; Song, B. M.; Han, Q. S.; Li, J. Y.; Zhang, Y.; Fang, Y.; Tenne, R. Wang, C. ACS Nano 2011, 5, 1276.  10.1021/nn102941b  

  • 加载中
    1. [1]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(1409)
  • Abstract views(3342)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return