Citation: WANG Wei-Yan, ZHANG Xiao-Zhe, YANG Yun-Quan, YANG Yan-Song, PENG Hui-Zuo, LUO He-An. Preparation of La-Ni-Mo-B Amorphous Catalyst and Its Catalytic Properties for Hydrodeoxygenation of Phenol[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1243-1251. doi: 10.3866/PKU.WHXB201203081 shu

Preparation of La-Ni-Mo-B Amorphous Catalyst and Its Catalytic Properties for Hydrodeoxygenation of Phenol

  • Received Date: 1 January 2012
    Available Online: 8 March 2012

    Fund Project: 湘潭大学资助基金(2011XZX11) (2011XZX11)湖南省教育厅开放基金(10K062)资助项目 (10K062)

  • Lanthanum-promoted Ni-Mo-B amorphous catalysts were prepared by chemical reduction of the corresponding metal salts with sodium borohydride aqueous solution. Scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the resulting materials. Phenol was used as model compound to test the hydrodeoxygenation (HDO) activity of the La-Ni-Mo-B amorphous catalysts. Adding lanthanum could decrease the particle size, increase the content of Ni0 and promote the reduction of Mo6+ to Mo4+ . But excess lanthanum would cover some of the Ni0, and Mo4+ active sites. The high hydrogenation activity was attributed to the amorphous structure of the catalyst and the high content of Ni0 and the high degree of deoxygenation was attributed to the high content of MoO2. The HDO reation of phenol on the La-Ni-Mo-B amorphous catalyst proceeded with a hydrogenation-dehydration route, thus decreasing the aromatic content of the HDO products. Both the conversion and the total deoxygenation degree were up to 99.0%. The deactivation of the La-Ni-Mo-B amorphous catalysts during the HDO reation of phenol at high temperature was mainly caused by the crystallization of the amorphous structure.
  • 加载中
    1. [1]

      (1) Bull, T. E.; Turner, J. A. Science 1999, 285, 1209.

    2. [2]

      (2) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552.  

    3. [3]

      (3) Furimsky, E. Appl. Catal. A: Gen. 2000, 199, 147.  

    4. [4]

      (4) önal, E. P.; Uzun, B. B.; Pütün, A. E. Fuel Process. Technol. 2011, 92, 879.  

    5. [5]

      (5) French, R.; Czernik, S. Fuel Process. Technol. 2010, 91, 25.  

    6. [6]

      (6) Bunch, A. Y.; Wang, X.; Ozkan, U. S. J. Mol. Catal. A: Chem. 2007, 270, 264.  

    7. [7]

      (7) Senol, O. I.; Ryymin, E. M.; Viljava, T. R.; Krause, A. O. I. J. Mol. Catal. A: Chem. 2007, 277, 107.  

    8. [8]

      (8) Yang, Y.; Luo, H. a.; Tong, G.; Smith, K. J.; Tye, C. T. Chin. J. Chem. Eng. 2008, 16, 733.  

    9. [9]

      (9) Ryymin, E. M.; Honkela, M. L.; Viljava, T. R.; Krause, A. O. I. Appl. Catal. A: Gen. 2009, 358, 42.  

    10. [10]

      (10) Kubicka, D.; Bejblová, M.; Vlk, J. Top. Catal. 2010, 53, 168.  

    11. [11]

      (11) Badawi, M.; Paul, J. F.; Cristol, S.; Payen, E.; Romero, Y.; Richard, F.; Brunet, S.; Lambert, D.; Portier, X.; Popov, A.; Kondratieva, E.; upil, J. M.; El Fallah, J.; Gilson, J. P.; Mariey, L.; Travert, A.; Maugé, F. J. Catal. 2011, 282, 155.  

    12. [12]

      (12) Bui, V. N.; Laurenti, D.; Delichère, P.; Geantet, C. Appl. Catal. B: Environ. 2011, 101, 246.  

    13. [13]

      (13) Romero, Y.; Richard, F.; Brunet, S. Appl. Catal. B: Environ. 2010, 98, 213.  

    14. [14]

      (14) Yang, Y.; Gilbert, A.; Xu, C. Appl. Catal. A: Gen. 2009, 360, 242.  

    15. [15]

      (15) Whiffen, V. M. L.; Smith, K. J. Energy Fuels 2010, 24, 4728.  

    16. [16]

      (16) Li, K.; Wang, R.; Chen, J. Energy Fuels 2011, 25, 854.  

    17. [17]

      (17) Zhao, H. Y.; Li, D.; Bui, P.; Oyama, S. T. Appl. Catal. A: Gen. 2011, 391, 305.  

    18. [18]

      (18) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Angew. Chem. Int. Edit. 2009, 48, 3987.  

    19. [19]

      (19) Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.  

    20. [20]

      (20) Li, N.; Huber, G. W. J. Catal. 2010, 270, 48.  

    21. [21]

      (21) Ruiz, P. E.; Leiva, K.; Garcia, R.; Reyes, P.; Fierro, J. L. G.; Escalona, N. Appl. Catal. A: Gen. 2010, 384, 78.  

    22. [22]

      (22) nzález-Borja, M. A. n.; Resasco, D. E. Energy Fuels 2011, 25, 4155.

    23. [23]

      (23) Nimmanwudipong, T.; Runnebaum, R. C.; Block, D. E.; Gates, B. C. Energy Fuels 2011, 25, 3417.  

    24. [24]

      (24) Sitthisa, S.; Pham, T.; Prasomsri, T.; Sooknoi, T.; Mallinson, R. G.; Resasco, D. E. J. Catal. 2011, 280, 17.  

    25. [25]

      (25) Zhu, X.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E. J. Catal. 2011, 281, 21.  

    26. [26]

      (26) Wang, Y.; Fang, Y.; He, T.; Hu, H.; Wu, J. Catal. Commun. 2011, 12, 1201.  

    27. [27]

      (27) Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem. Int. Edit. 2010, 49, 5549.  

    28. [28]

      (28) Zhang, W.; Zhang, Y.; Zhao, L.; Wei, W. Energy Fuels 2010, 24, 2052.  

    29. [29]

      (29) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Chem. Commun. 2010, 46, 412.  

    30. [30]

      (30) Mei, D.; Karim, A. M.; Wang, Y. J. Phys. Chem. C 2011, 115, 8155.  

    31. [31]

      (31) Viljava, T. R.; Komulainen, R. S.; Krause, A. O. I. Catal. Today 2000, 60, 83.  

    32. [32]

      (32) Ferrari, M.; Bosmans, S.; Maggi, R.; Delmon, B.; Grange, P. Catal. Today 2001, 65, 257.  

    33. [33]

      (33) Bunch, A. Y.; Ozkan, U. S. J. Catal. 2002, 206, 177.  

    34. [34]

      (34) Senol, O. I.; Viljava, T. R.; Krause, A. O. I. Catal. Today 2005, 106, 186.  

    35. [35]

      (35) Gandarias, I.; Barrio, V. L.; Requies, J.; Arias, P. L.; Cambra, J. F.; Güemez, M. B. Int. J. Hydrogen Energy 2008, 33, 3485.  

    36. [36]

      (36) Yang, Y. Q.; Tye, C. T.; Smith, K. J. Catal. Commun. 2008, 9, 1364.  

    37. [37]

      (37) Zhao, B.; Chou, C. J.; Chen, Y. W. Ind. Eng. Chem. Res. 2010, 49, 1669.  

    38. [38]

      (38) Li, H.; Zhang, D.; Li, G.; Xu, Y.; Lu, Y.; Li, H. Chem. Commun. 2010, 46, 791.  

    39. [39]

      (39) Li, H.; Xu, Y.; Yang, H.; Zhang, F.; Li, H. J. Mol. Catal. A: Chem. 2009, 307, 105.  

    40. [40]

      (40) Chen, Y. W.; Sasirekha, N. Ind. Eng. Chem. Res. 2009, 48, 6248.  

    41. [41]

      (41) Rajesh, B.; Sasirekha, N.; Lee, S. P.; Kuo, H. Y.; Chen, Y. W. J. Mol. Catal. A: Chem. 2008, 289, 69.  

    42. [42]

      (42) Zheng, Y. X.; Yao, S. B.; Zhou, S. M. Acta Phys. -Chim. Sin. 2004, 20, 1352. [郑一雄, 姚士冰, 周绍民. 物理化学学报, 2004, 20, 1352.]

    43. [43]

      (43) Li, H.; Liu, J.; Xie, S.; Qiao, M.; Dai, W.; Li, H. J. Catal. 2008, 259, 104.  

    44. [44]

      (44) Tong, D. G.; Chu, W.; Luo, Y. Y.; Ji, X. Y.; He, Y. J. Mol. Catal. A: Chem. 2007, 265, 195.  

    45. [45]

      (45) Tong, D.; Han, X.; Chu, W.; Chen, H.; Ji, X. Y. Mater. Lett. 2007, 61, 4679.  

    46. [46]

      (46) Li, H.; Yang, P.; Chu, D.; Li, H. Appl. Catal. A: Gen. 2007, 325, 34.  

    47. [47]

      (47) Li, H.; Li, H.; Zhang, J.; Dai, W.; Qiao, M. J. Catal. 2007, 246, 301.  

    48. [48]

      (48) Long, J. Y.; Ma, L.; He, D. H. Acta Phys. -Chim. Sin. 2010, 26, 2719. [龙俊英, 马兰, 贺德华. 物理化学学报, 2010, 26, 2719.]

    49. [49]

      (49) Liu, Y. C.; Chen, Y. W. Ind. Eng. Chem. Res. 2006, 45, 2973.  

    50. [50]

      (50) Li, H.; Wu, Y.; Zhang, J.; Dai, W.; Qiao, M. Appl. Catal. A: Gen. 2004, 275, 199.  

    51. [51]

      (51) Chen, X.; Wang, S.; Zhuang, J.; Qiao, M.; Fan, K.; He, H. J. Catal. 2004, 227, 419.  

    52. [52]

      (52) Li, H.; Wu, Y.; Luo, H.; Wang, M.; Xu, Y. J. Catal. 2003, 214, 15.  

    53. [53]

      (53) Lin, M. H.; Zhao, B.; Chen, Y. W. Ind. Eng. Chem. Res. 2009, 48, 7037.  

    54. [54]

      (54) Liu, H.; Wang, H.; Shen, J.; Sun, Y.; Liu, Z. Catal. Today 2008, 131, 444.  

    55. [55]

      (55) Wu, M. X.; Li, W.; Zhang, M. H.; Tao, K. Y. Acta Phys. -Chim. Sin. 2011, 27, 953. [武美霞, 李伟, 张明慧, 陶克毅. 物理化学学报, 2011, 27, 953.]

    56. [56]

      (56) Liu, Y. C.; Chen, Y. W. Ind. Eng. Chem. Res. 2006, 45, 2973.  

    57. [57]

      (57) Shi, Q. J.; Lei, J. X.; Zhang, N. Acta Phys. -Chim. Sin. 2007, 23, 98. [石秋杰, 雷经新, 张宁. 物理化学学报, 2007, 23, 98.]

    58. [58]

      (58) Li, H.; Zhang, S.; Luo, H. Mater. Lett. 2004, 58, 2741.  

    59. [59]

      (59) Hou, Y.; Wang, Y.; He, F.; Han, S.; Mi, Z.; Wu, W.; Min, E. Mater. Lett. 2004, 58, 1267.  

    60. [60]

      (60) Li, H.; Luo, H.; Zhuang, L.; Dai, W.; Qiao, M. J. Mol. Catal. A: Chem. 2003, 203, 267.  

    61. [61]

      (61) Wang, W. Y.; Yang, Y. Q.; Luo, H. A.; Peng, H. Z.; He, B.; Liu, W. Y. Catal. Commun. 2011, 12, 1275.  

    62. [62]

      (62) Wang, W. Y.; Yang, Y. Q.; Luo, H. A.; Hu, T.; Liu, W. Y. Catal. Commun. 2011, 12, 436.  

    63. [63]

      (63) Wang, W. Y.; Yang, Y. Q.; Bao, J. G.; Luo, H. A. Catal. Commun. 2009, 11, 100.  

    64. [64]

      (64) Kukula, P.; Gabova, V.; Koprivova, K.; Trtik, P. Catal. Today 2007, 121, 27.  

    65. [65]

      (65) Parks, G. L.; Pease, M. L.; Burns, A. W.; Layman, K. A.; Bussell, M. E.; Wang, X.; Hanson, J.; Rodriguez, J. A. J. Catal. 2007, 246, 277.  

    66. [66]

      (66) Wu, Z.; Ge, S. Catal. Commun. 2011, 13, 40.  

    67. [67]

      (67) Liu, B.; Qiao, M.; Wang, J.; Fan, K. Chem. Commun. 2002, 1236.  

    68. [68]

      (68) Liu, S. C.; Liu, Z.; Wang, Z.; Wu, Y.; Yuan, P. Chem. Eng. J. 2008, 139, 157.  

    69. [69]

      (69) Patel, N.; Fernandes, R.; Miotello, A. J. Catal. 2010, 271, 315.  

    70. [70]

      (70) Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Nature 1991, 353, 414.  

    71. [71]

      (71) Lu, L.; Rong, Z.; Du, W.; Ma, S.; Hu, S. ChemCatChem 2009, 1, 369.  

    72. [72]

      (72) Chen, X.; Li, H.; Dai, W.; Wang, J.; Ran, Y.; Qiao, M. Appl. Catal. A: Gen. 2003, 253, 359.  

    73. [73]

      (73) Zhang, R.; Li, F.; Shi, Q.; Luo, L. Appl. Catal. A: Gen. 2001, 205, 279.  

    74. [74]

      (74) Shen, J.; Chen, Y. J. Mol. Catal. A: Chem. 2007, 273, 265.  

    75. [75]

      (75) Zhang, X.; Ma, A.; Mu, X.; Min, E. Catal. Today 2002, 74, 77.  

    76. [76]

      (76) Liaw, B. J.; Chiang, S. J.; Chen, S. W.; Chen, Y. Z. Appl. Catal. A: Gen. 2008, 346, 179.  

    77. [77]

      (77) Meng, Q.; Li, H.; Li, H. J. Phys. Chem. C 2008, 112, 11448.  

    78. [78]

      (78) Patel, N.; Fernandes, R.; Miotello, A. J. Power Sources 2009, 188, 411.  

    79. [79]

      (79) Belatel, H.; Al-Kandari, H.; Al-Khorafi, F.; Katrib, A.; Garin, F. Appl. Catal. A: Gen. 2004, 275, 141.  

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    6. [6]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(788)
  • Abstract views(2643)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return