Citation: WANG Yan-Yan, JIANG Yan-Xia, ROGACH Andrey, SUN Shi-Gang. Effect of pH and Au Nanoparticles on Cytochrome c Investigated by Electrochemistry and UV-Vis Absorption Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1127-1133. doi: 10.3866/PKU.WHXB201203073 shu

Effect of pH and Au Nanoparticles on Cytochrome c Investigated by Electrochemistry and UV-Vis Absorption Spectroscopy

  • Received Date: 13 January 2012
    Available Online: 7 March 2012

    Fund Project: 国家自然科学基金(20833005, 20873116, 60936003, 21021002)资助项目 (20833005, 20873116, 60936003, 21021002)

  • In this paper, ld nanoparticles (NPs) with an average size of (4.7 ± 0.6) nm, capped with mercaptopropionic acid (MPA) ligand, are prepared. The effect of pH and Au NPs on cytochrome c (Cyt c) is investigated by electrochemistry and UV-Vis absorption spectroscopy. UV-Vis absorption spectra indicate that the structures of Cyt c and Cyt c-Au NPs complex do not change appreciably between pH=7.5 and pH=3.0, but their Soret band positions change markedly at pH=2.0, indicating that low pH value induces a conformational change in Cyt c. Cyclic voltammetry (CV) result shows that Au NPs capped with MPA enhance electron transfer between Cyt c and the electrode. The data also reveals that the biocompatibility of Au NPs is improved when citric acid ligand is replaced with MPA. The change in pH value causes a change of peak currents in CV and a shift of peak potential. When pH value deviates from 7.0, levels of electroactive Cyt c decrease. Significant pH change induces irreversible denaturing of Cyt c. The pH at which Cyt c-Au NPs complex denatures completely is one unit higher than that of Cyt c. Combining the results from UV-Vis spectroscopy and CV, we find that addition of Au NPs makes adsorbing state Cyt c more vulnerable to pH.
  • 加载中
    1. [1]

      (1) Verdoold, R.; Gill, R.; Ungureanu, F.; Molenaar, R.; Kooyman, R. P. H. Biosensors. Bioelectron. 2011, 27, 77.  

    2. [2]

      (2) Zhang, H.; Wang, L.; Jiang, W. Talanta 2011, 85, 725.  

    3. [3]

      (3) Wang, W.; Zhang, T. J.; Zhang, D. W.; Li, H. Y.; Ma, Y. R.; Qi, L. M.; Zhou, Y. L.; Zhang, X. X. Talanta 2011, 84, 71.  

    4. [4]

      (4) Sule. N.; Singh, R.; Srivastava. D. K. J. Biomed. Nanotechnol. 2008, 4, 463.  

    5. [5]

      (5) Liu, Z.; Luo, L.; Dong, Y.; Weng, G.; Li, J. J. Colloid Interface Sci. 2011, 363, 182.  

    6. [6]

      (6) Zhang, J.; Pearce, M. C.; Ting, B. P.; Ying, J. Y. Biosensors Bioelectron. 2011, 27, 53.  

    7. [7]

      (7) Peled, D.; Naaman, R.; Daube, S. S. J. Phys. Chem. B 2010, 114, 8581.

    8. [8]

      (8) Ramallo-Lopez, J. M.; Giovanetti, L. J.; Requejo, F. G.; Lsaacs, S. R.; Shon, Y. S.; Salmeron, M. Phys. Rev. B 2006, 74, 073410.  

    9. [9]

      (9) Wang, L.; Dang, Y. Q.; Zhang, M.; Sun, J.; Wu, Y. Q. Chemical Journal of Chinese Universities 2009, 30, 135. [王磊, 党永强, 张敏, 孙健, 吴玉清. 高等学校化学学报, 2009, 30, 135.]

    10. [10]

      (10) Loftus, A. F.; Reighard, K. P.; Kapourales, S. A.; Leopold, M. C. J. Am. Chem. Soc. 2008, 130, 1649.  

    11. [11]

      (11) Doan, T. T.; Var , M. L.; Gerig, J. K.; Gulka, C. P.; Trawick, M. L.; Dattelbaum, J. D.; Leopold, M. C. J. Colloid Interface Sci. 2010, 352, 50.  

    12. [12]

      (12) Hicks, J. F.; Seok-Shon, Y.; Murray, R. W. Langmuir 2002, 18, 2288.  

    13. [13]

      (13) Han, N. N.; Wang, H.; Li, N.; Zhou, J. Z.; Lin, Z. H.; Wu, D.; Wan, G. J. Acta Phys. -Chim. Sin. 2011, 27, 468. [韩楠楠, 王慧, 栗娜, 周剑章, 林仲华, 吴迪, 万国江. 物理化学学报, 2011, 27, 468.]

    14. [14]

      (14) Li, N.; Zhou, J. Z.; Lin, L. L.; Han, N. N.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2468. [栗娜, 周剑章, 林玲玲, 韩楠楠, 林仲华. 物理化学学报, 2010, 26, 2468.]

    15. [15]

      (15) Wan, P.; Wang, Y.; Jiang, Y.; Xu, H.; Zhang, X. Adv. Mater. 2009, 21, 4362.  

    16. [16]

      (16) Liu, H. Q.; Tian, Y.; Deng, Z. F. Langmuir 2007, 23, 9487.  

    17. [17]

      (17) Wang, W.; Waldeck, D. H. J. Phys. Chem. C 2008, 112, 1351.  

    18. [18]

      (18) Abad, J. M.; Mertens, S. F. L.; Pita, M.; Fernandez, V. M.; Schiffrin, D. J. J. Am. Chem. Soc. 2005, 127, 5689.  

    19. [19]

      (19) Beissenhirtz, M. K.; Scheller, F. W.; Lisdat, F. Anal. Chem. 2004, 76, 4665.  

    20. [20]

      (20) Munakata, H.; Oyamatsu, D.; Kuwabata, S. Langmuir 2004, 20, 10123.  

    21. [21]

      (21) Petrovic. J.; Clark, R. A. Langmuir 2005, 21, 6308.  

    22. [22]

      (22) Caban, K.; Offenhäusser, A.; Mayer, D. Phys. Status Solidi A 2009, 206, 489.  

    23. [23]

      (23) Laviron, E. J. Electroanal. Chem. 1979, 100, 263.  

    24. [24]

      (24) Jensen, P. S.; Chi, Q. J.; Grumsen, F. B.; Abad, J. M.; Horsewell, A.; Schiffrin, D. J.; UIstrup, J. J. Phys. Chem. C 2007, 111, 6124.  

    25. [25]

      (25) Xiang, C.; Zou, Y.; Sun, L.; Xu, F. Talanta 2007, 74, 206.  

    26. [26]

      (26) Keating, C. D.; Kovaleski, K. K.; Natan, M. J. J. Phys. Chem. B 1998, 102, 9414.  

    27. [27]

      (27) Xiang, C.; Zou, Y.; Sun, L. X.; Xu, F. Electrochem. Commun. 2008, 10, 38.  

    28. [28]

      (28) Wang, L.; Wang, E. Electrochem. Commun. 2004, 6, 49.  

    29. [29]

      (29) Nakano, K; Yoshitake, T.; Yamashita, Y.; Bowden, E. F. Langmuir 2007, 23, 6270.  

    30. [30]

      (30) Jiang, X.; Shang, L.; Wang, Y. L.; Dong, S. J. Biomacromolecules 2005, 6, 3030.  

    31. [31]

      (31) Cheng, Y. Y.; Chang, H. C.; Hoops, G.; Su, M. C. J. Am. Soc. Chem. 2004, 126, 10828.  

    32. [32]

      (32) Kasmi, A. E.; Wallace, J. M.; Bowden, E. F.; Binet, S. M.; Linderman, R. J. J. Am. Chem. Soc. 1998, 120, 225.  

    33. [33]

      (33) Murgida, D. H.; Hildebrandt, P.; Wei, J.; He, Y. F.; Liu, H.; Waldeck, D. H. J. Phys. Chem. B 2004, 108, 2261.  

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    3. [3]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    13. [13]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(868)
  • Abstract views(2499)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return