Citation: ZHANG Xia, ZHANG Qiang, ZHAO Dong-Xia. Quasi-Elastic Neutron Scattering Spectroscopy of the 1-Propanol/Water Solution by Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1037-1044. doi: 10.3866/PKU.WHXB201203072 shu

Quasi-Elastic Neutron Scattering Spectroscopy of the 1-Propanol/Water Solution by Molecular Dynamics Simulations

  • Received Date: 20 December 2011
    Available Online: 7 March 2012

    Fund Project: 国家自然科学基金(20873055, 21176029)资助项目 (20873055, 21176029)

  • Quasi-elastic neutron scattering (QENS) spectroscopy as an important tool can be used to extract the molecular dynamic properties. However, the validity of the dynamical models and the decoupling approximation used in QENS spectral analysis is a topic of on ing debate. In this paper, the self-intermediate scattering function FS(Q, t) and the decoupling approximation function FP(Q, t) of the hydroxyl hydrogen in pure water and in 1-propanol/water mixture, and certain dynamic properties predicted by three translation models, are derived from molecular dynamics simulations to assess their reasonability. The results suggest that the decoupling approximations for the water hydrogen in pure water and in mixture are reasonable at low momentum transfer Q. The contribution from the translation-rotation coupling term is small for the pure water. The coupling effect is strengthened for the water hydrogen when 1-propanol is added to the water. Under these conditions, the coupling and rotation terms both increase with the momentum transfer Q and largely cancel each other. For the hydroxyl hydrogen of 1-propanol in the mixture, the translational diffusion constant cannot be directly derived from the experimental spectrum, due to large deviation between FS(Q, t) and the center-of-mass translational function FCM(Q, t). The translational diffusion constants by the three translation models used in our current work are consistent with experimental results and a little higher than those predicted by the Einstein method. The jump rotation, as opposed to continuous rotation, is observed for the water molecule in both bulk water and mixture. For the 1-propanol molecule, rotations are anisotropic, being continuous along the axis from the hydroxyl hydrogen to the center-of-mass, and jumping along the hydroxyl bond vector. Simulations indicate that neither the rotational diffusion constant nor the relaxation time at high momentum transfer Q are adequately determined by the decoupling models, since the coupling effects become significant. Within the low momentum transfer range, the translation properties can be reasonably derived, due to the negligible contributions from the rotation and the coupling terms, as well as the canceling effect between them.
  • 加载中
    1. [1]

      (1) Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123, 8047.  

    2. [2]

      (2) Rezus, Y. L. A.; Bakker, H. J. J. Chem. Phys. 2005, 123, 114502.  

    3. [3]

      (3) Park, S.; Moilanen, D. E.; Fayer, M. D. J. Phys. Chem. B 2008, 112, 5279.  

    4. [4]

      (4) Cabral, J. T.; Luzar, A.; Teixeira, J.; Bellissent-Funel, M. -C. J. Chem. Phys. 2000, 113, 8736

    5. [5]

      (5) Bée, M. Quasielastic Neutron Scattering; Adam Hilger: Bristol, 1988.

    6. [6]

      (6) Teixeira, J.; Luzar, A.; Longeville, S. J. Phys.: Condens. Matter 2006, 18, S2353.

    7. [7]

      (7) Harpham, M. R.; Ladanyi, B. M.; Levinger, N. E.; Herwig, K. W. J. Chem. Phys. 2004, 121, 7855.  

    8. [8]

      (8) Debye, P. Polar Molecules; The Chemical Catalog Company: New York, 1929.

    9. [9]

      (9) Sears, V. F. Can. J. Phys. 1966, 44, 1299.  

    10. [10]

      (10) Teixeira, J.; Bellissent-Funel, M. C.; Chen, S. H.; Dianoux, A. J. Phys. Rev. A 1985, 31, 1913.  

    11. [11]

      (11) Laage, D. J. Phys. Chem. B 2009, 113, 2684.  

    12. [12]

      (12) (a) Egelstaff, P. A. An Introduction to the Liquid State ; Academic: London, 1967.  

    13. [13]

      (b) Harpham, M. R.; Levinger, N. E.; Ladanyi, B. M. J. Phys. Chem. B 2008, 112, 283.  

    14. [14]

      (13) Götze, W.; Sjögren, L. Rep. Prog. Phys. 1992, 55, 241.  

    15. [15]

      (14) Chen, S. H.; Liao, C.; Sciortino, F.; Gallo, P.; Tartaglia, P. Phys. Rev. E 1999, 59, 6708.  

    16. [16]

      (15) Nakada, M.; Maruyama, K.; Yamamuro, O.; Misawa, M. J. Chem. Phys. 2009, 130, 074503.  

    17. [17]

      (16) Murarkaa, R. K.; Head- rdon, T. J. Chem. Phys. 2007, 126, 215101.  

    18. [18]

      (17) Qvist, J.; Schober, H.; Halle, B. J. Chem. Phys. 2011, 134, 144508.  

    19. [19]

      (18) Laage, D.; Hynes, J. T. J. Phys. Chem. B 2008, 112, 14230.  

    20. [20]

      (19) Dixit, S.; Crain, J.; Poon, W. C. K.; Finney, J. L.; Soper, A. K. Nature 2002, 416, 829.  

    21. [21]

      (20) Sato, T.; Chiba, A.; Nozaki, R. J. Chem. Phys. 2000, 113, 9748.  

    22. [22]

      (21) Sato, T. J. Mol. Liq. 2005, 117, 23-31.

    23. [23]

      (22) Roney, A. B.; Space, B.; Castner, E. W.; Napoleon, R.; Moore, P. B. J. Phys. Chem. B 2004, 108, 7389.  

    24. [24]

      (23) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  

    25. [25]

      (24) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225.  

    26. [26]

      (25) Haughney, M.; Ferrario, M.; McDonaldt, I. R. J. Phys. Chem. 1987, 91, 4934.  

    27. [27]

      (26) Chowdhuria, S.; Chandra, A. J. Chem. Phys. 2005, 123, 234501.  

    28. [28]

      (27) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Di Nola, A.; Hauk, J. R. J. Chem. Phys. 1984, 81, 3684.  

    29. [29]

      (28) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon: Oxford, 1987.

    30. [30]

      (29) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.  

    31. [31]

      (30) J. W. Ponder, F. M. Richards J. Comput. Chem. 1987, 8, 1016.  

    32. [32]

      (31) Hawlicka, E.; Grabowski, R. J. Phys. Chem. 1992, 96, 1554.  

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    19. [19]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    20. [20]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

Metrics
  • PDF Downloads(957)
  • Abstract views(2335)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return