Citation: ZHANG Xia, ZHANG Qiang, ZHAO Dong-Xia. Quasi-Elastic Neutron Scattering Spectroscopy of the 1-Propanol/Water Solution by Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1037-1044. doi: 10.3866/PKU.WHXB201203072 shu

Quasi-Elastic Neutron Scattering Spectroscopy of the 1-Propanol/Water Solution by Molecular Dynamics Simulations

  • Received Date: 20 December 2011
    Available Online: 7 March 2012

    Fund Project: 国家自然科学基金(20873055, 21176029)资助项目 (20873055, 21176029)

  • Quasi-elastic neutron scattering (QENS) spectroscopy as an important tool can be used to extract the molecular dynamic properties. However, the validity of the dynamical models and the decoupling approximation used in QENS spectral analysis is a topic of on ing debate. In this paper, the self-intermediate scattering function FS(Q, t) and the decoupling approximation function FP(Q, t) of the hydroxyl hydrogen in pure water and in 1-propanol/water mixture, and certain dynamic properties predicted by three translation models, are derived from molecular dynamics simulations to assess their reasonability. The results suggest that the decoupling approximations for the water hydrogen in pure water and in mixture are reasonable at low momentum transfer Q. The contribution from the translation-rotation coupling term is small for the pure water. The coupling effect is strengthened for the water hydrogen when 1-propanol is added to the water. Under these conditions, the coupling and rotation terms both increase with the momentum transfer Q and largely cancel each other. For the hydroxyl hydrogen of 1-propanol in the mixture, the translational diffusion constant cannot be directly derived from the experimental spectrum, due to large deviation between FS(Q, t) and the center-of-mass translational function FCM(Q, t). The translational diffusion constants by the three translation models used in our current work are consistent with experimental results and a little higher than those predicted by the Einstein method. The jump rotation, as opposed to continuous rotation, is observed for the water molecule in both bulk water and mixture. For the 1-propanol molecule, rotations are anisotropic, being continuous along the axis from the hydroxyl hydrogen to the center-of-mass, and jumping along the hydroxyl bond vector. Simulations indicate that neither the rotational diffusion constant nor the relaxation time at high momentum transfer Q are adequately determined by the decoupling models, since the coupling effects become significant. Within the low momentum transfer range, the translation properties can be reasonably derived, due to the negligible contributions from the rotation and the coupling terms, as well as the canceling effect between them.
  • 加载中
    1. [1]

      (1) Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123, 8047.  

    2. [2]

      (2) Rezus, Y. L. A.; Bakker, H. J. J. Chem. Phys. 2005, 123, 114502.  

    3. [3]

      (3) Park, S.; Moilanen, D. E.; Fayer, M. D. J. Phys. Chem. B 2008, 112, 5279.  

    4. [4]

      (4) Cabral, J. T.; Luzar, A.; Teixeira, J.; Bellissent-Funel, M. -C. J. Chem. Phys. 2000, 113, 8736

    5. [5]

      (5) Bée, M. Quasielastic Neutron Scattering; Adam Hilger: Bristol, 1988.

    6. [6]

      (6) Teixeira, J.; Luzar, A.; Longeville, S. J. Phys.: Condens. Matter 2006, 18, S2353.

    7. [7]

      (7) Harpham, M. R.; Ladanyi, B. M.; Levinger, N. E.; Herwig, K. W. J. Chem. Phys. 2004, 121, 7855.  

    8. [8]

      (8) Debye, P. Polar Molecules; The Chemical Catalog Company: New York, 1929.

    9. [9]

      (9) Sears, V. F. Can. J. Phys. 1966, 44, 1299.  

    10. [10]

      (10) Teixeira, J.; Bellissent-Funel, M. C.; Chen, S. H.; Dianoux, A. J. Phys. Rev. A 1985, 31, 1913.  

    11. [11]

      (11) Laage, D. J. Phys. Chem. B 2009, 113, 2684.  

    12. [12]

      (12) (a) Egelstaff, P. A. An Introduction to the Liquid State ; Academic: London, 1967.  

    13. [13]

      (b) Harpham, M. R.; Levinger, N. E.; Ladanyi, B. M. J. Phys. Chem. B 2008, 112, 283.  

    14. [14]

      (13) Götze, W.; Sjögren, L. Rep. Prog. Phys. 1992, 55, 241.  

    15. [15]

      (14) Chen, S. H.; Liao, C.; Sciortino, F.; Gallo, P.; Tartaglia, P. Phys. Rev. E 1999, 59, 6708.  

    16. [16]

      (15) Nakada, M.; Maruyama, K.; Yamamuro, O.; Misawa, M. J. Chem. Phys. 2009, 130, 074503.  

    17. [17]

      (16) Murarkaa, R. K.; Head- rdon, T. J. Chem. Phys. 2007, 126, 215101.  

    18. [18]

      (17) Qvist, J.; Schober, H.; Halle, B. J. Chem. Phys. 2011, 134, 144508.  

    19. [19]

      (18) Laage, D.; Hynes, J. T. J. Phys. Chem. B 2008, 112, 14230.  

    20. [20]

      (19) Dixit, S.; Crain, J.; Poon, W. C. K.; Finney, J. L.; Soper, A. K. Nature 2002, 416, 829.  

    21. [21]

      (20) Sato, T.; Chiba, A.; Nozaki, R. J. Chem. Phys. 2000, 113, 9748.  

    22. [22]

      (21) Sato, T. J. Mol. Liq. 2005, 117, 23-31.

    23. [23]

      (22) Roney, A. B.; Space, B.; Castner, E. W.; Napoleon, R.; Moore, P. B. J. Phys. Chem. B 2004, 108, 7389.  

    24. [24]

      (23) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  

    25. [25]

      (24) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225.  

    26. [26]

      (25) Haughney, M.; Ferrario, M.; McDonaldt, I. R. J. Phys. Chem. 1987, 91, 4934.  

    27. [27]

      (26) Chowdhuria, S.; Chandra, A. J. Chem. Phys. 2005, 123, 234501.  

    28. [28]

      (27) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Di Nola, A.; Hauk, J. R. J. Chem. Phys. 1984, 81, 3684.  

    29. [29]

      (28) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon: Oxford, 1987.

    30. [30]

      (29) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.  

    31. [31]

      (30) J. W. Ponder, F. M. Richards J. Comput. Chem. 1987, 8, 1016.  

    32. [32]

      (31) Hawlicka, E.; Grabowski, R. J. Phys. Chem. 1992, 96, 1554.  

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

Metrics
  • PDF Downloads(957)
  • Abstract views(2262)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return