Citation:
WU Lin-Feng, LI Fei-Fei, ZHANG Cong-Jie. Structure and Stability of Compounds with Planar Pentacoordinate Carbons and Planar Tetracoordinate Carbons[J]. Acta Physico-Chimica Sinica,
;2012, 28(05): 1113-1119.
doi:
10.3866/PKU.WHXB201203071
-
We have investigated the structures, gaps, IR spectra, electronic spectra, Wiberg bond indices (WBIs), and aromaticity of CB5C2H2(C3B2)nC2H2CB5 (n=1-5) with planar pentacoordinate carbons (ppC) and planar tetracoordinate carbons (ptC) at the B3LYP/6-311 + G** level. Calculations indicate that the five compounds with the lowest energies are located at the minima of the potential energy surfaces. The energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) vary between 0.5 and 1.2 eV; the first electronic transition wavelengths are between 1780 and 2910 nm and depend non-monotonically on the size of the compounds. WBIs of the five compounds show that they contain both ppC and ptC. The nucleus-independent chemical shift (NICS(0)) values of the centers of the three-membered rings of the CB5 sections on the right side of these compounds, as well as the C3B2 sections, are negative, while the NICS(0) values of only two centers of the three-membered rings of the CB5 sections on the left side are negative. In addition, since the NICS(0) of the centers of the three-membered rings are consistent with those of NICS(1), then local delocalization of the π electrons must play an important role in stabilizing these compounds.
-
-
-
[1]
(1) Hoffmann, R.; Alder, R.W.;Wilcox, C. F. J. Am. Chem. Soc. 1970, 92, 4992.
-
[2]
(2) McGrath, M. P.; Radom, L. J. Am. Chem . Soc. 1993, 115, 3320.
-
[3]
(3) Wang, Z. X.; Schleyer, P. V. R. J. Am. Chem. Soc. 2001, 123, 994.
-
[4]
(4) Wang, Z. X.; Schleyer, P. V. R. J. Am. Chem. Soc. 2002, 124, 11979.
-
[5]
(5) Rasmussen, D. R.; Radom, L. Angew. Chem. Int. Edit. 1999, 38, 2876.
-
[6]
(6) Li, X.;Wang, L. S.; Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc. 1999, 121, 6033.
-
[7]
(7) Wang, L. S.; Boldyrev, A. I.; Li, X.; Simons, J. J. Am. Chem. Soc. 2000, 122, 7681.
-
[8]
(8) Liang, J. X.; Jia,W. H.; Zhang, C. J.; Cao, Z. X. Acta Phys. -Chim. Sin. 2009, 25, 1847. [梁锦霞, 贾文红, 张聪杰, 曹泽星. 物理化学学报, 2009, 25, 1847.]
-
[9]
(9) Sun,W. X.; Zhang, C. J.;Wu, H. S. Acta Phys. -Chim. Sin. 2008, 24, 32. [孙文秀, 张聪杰. 物理化学学报, 2008, 24, 32.]
-
[10]
(10) Merino, G.; Mendez-Rojas, M. A.; Vela, A. J. Am. Chem. Soc. 2003, 125, 6026.
-
[11]
(11) Merino, G.; Mendez-Rojas, M. A.; Beltran, H. I.; Corminboeuf, C.; Heine, T.; Vela, A. J. Am. Chem. Soc. 2004, 126, 16160.
-
[12]
(12) Merino, G.; Mendez-Rojas, M. A.; Vela, A.; Heine, T. J. Comput. Chem. 2007, 28, 362.
-
[13]
(13) Keese, R. Chem. Rev. 2006, 106, 4748.
-
[14]
(14) Li, S. D.; Guo, J. C.; Miao, C. Q.; Ren, G. M. J. Phys. Chem. A 2005, 109, 4133.
-
[15]
(15) Li, S. D.; Guo, Q. L.; Miao, C. Q.; Ren, G. M. Acta Phys. -Chim. Sin. 2007, 23, 743. [李思殿, 郭巧凌, 苗常青, 任光明. 物理化学学报, 2007, 23, 743.]
-
[16]
(16) Roy, D.; Corminboeuf, C.;Wannere, C. S.; King, R. B.; Schleyer, P. V. R. Inorg. Chem. 2006, 45, 8902.
-
[17]
(17) Zhang, C. J.; Sun,W. X.; Cao, Z. X. J. Am. Chem. Soc. 2008, 130, 5638.
-
[18]
(18) Wang, Z. X.; Zhang, C. G.; Chen, Z.; Schleyer, P. V. R. Inorg. Chem. 2008, 47, 1332.
-
[19]
(19) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. V. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.
-
[20]
(20) Boldyrev, A. I.;Wang, L. S. J. Phys. Chem . A 2001, 105, 10759.
-
[21]
(21) Priyakumar, U. D.; Reddy, A. S.; Sastry, G. N. Tetrahedron Lett. 2004, 45, 2495.
-
[22]
(22) Pancharatna, P. D.; Mendez-Rojas, M. A.; Merino, G.; Vela, A.; Hoffmann, R. J. Am. Chem. Soc. 2004, 126, 15309.
-
[23]
(23) Perez, N.; Heine, T.; Barthel, R.; Seifert, G.; Vela, A.; Mendez-Rojas, M. A.; Merino, G. Org. Lett. 2005, 7, 1509.
-
[24]
(24) Esteves, P. M.; Ferreira, N. B. P.; Correa, R. J. J. Am. Chem. Soc. 2005, 127, 8680.
-
[25]
(25) Perez-Peralta, N.; Sanchez, M.; Martin-Polo, J.; Islas, R.; Vela, A.; Merino, G. J. Org. Chem. 2008, 73, 7037.
-
[26]
(26) Zhang, C. J.; Jia,W. H.; Cao, Z. X. J. Phys. Chem . A 2010, 114, 7960.
-
[27]
(27) Zhang, C. J.;Wang, P.; Liang, J. X.; Jia,W. H.; Cao, Z. X. J. Mol. Struct. -Theochem 2010, 941, 41.
-
[28]
(28) Sun,W. X.; Zhang, C. J.; Cao, Z. X. J. Phys. Chem . C 2008, 112, 351.
- [29]
-
[30]
(30) Wang, Z. X.; Schleyer, P. V. R. Science 2001, 292, 2465.
-
[31]
(31) Liang, J. X.; Zhang, C. J. Acta Chim. Sin. 2010, 68, 7. [梁锦霞, 张聪杰. 化学学报, 2010, 68, 7.]
-
[32]
(32) Jamie, K.; Robert, M.; Michael, J. F.; Rik, R. T. Org. Lett. 2008, 10, 2163.
-
[33]
(33) Wiberg, K. B. Tetrahedron 1968, 24, 1083.
-
[34]
(34) Frisch, M. J.; Trucks, G. A.; Schlegel, H. B.; et al . Gaussian 03, Revision C.02; Gaussian, Inc.:Wallingford, CT, 2004.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
-
[7]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[10]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[11]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[12]
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
-
[13]
Li Zhou , Dongyan Tang , Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037
-
[14]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[15]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[16]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[17]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[18]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[19]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[20]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[1]
Metrics
- PDF Downloads(585)
- Abstract views(2246)
- HTML views(10)