Citation: WU Lin-Feng, LI Fei-Fei, ZHANG Cong-Jie. Structure and Stability of Compounds with Planar Pentacoordinate Carbons and Planar Tetracoordinate Carbons[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1113-1119. doi: 10.3866/PKU.WHXB201203071 shu

Structure and Stability of Compounds with Planar Pentacoordinate Carbons and Planar Tetracoordinate Carbons

  • Received Date: 21 December 2011
    Available Online: 7 March 2012

    Fund Project: 2010 年度中央高校基本科研业务费专项资金(GK201002013) (GK201002013)厦门大学固体表面物理化学国家重点实验室开放课题(2010)资助 (2010)

  • We have investigated the structures, gaps, IR spectra, electronic spectra, Wiberg bond indices (WBIs), and aromaticity of CB5C2H2(C3B2)nC2H2CB5 (n=1-5) with planar pentacoordinate carbons (ppC) and planar tetracoordinate carbons (ptC) at the B3LYP/6-311 + G** level. Calculations indicate that the five compounds with the lowest energies are located at the minima of the potential energy surfaces. The energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) vary between 0.5 and 1.2 eV; the first electronic transition wavelengths are between 1780 and 2910 nm and depend non-monotonically on the size of the compounds. WBIs of the five compounds show that they contain both ppC and ptC. The nucleus-independent chemical shift (NICS(0)) values of the centers of the three-membered rings of the CB5 sections on the right side of these compounds, as well as the C3B2 sections, are negative, while the NICS(0) values of only two centers of the three-membered rings of the CB5 sections on the left side are negative. In addition, since the NICS(0) of the centers of the three-membered rings are consistent with those of NICS(1), then local delocalization of the π electrons must play an important role in stabilizing these compounds.
  • 加载中
    1. [1]

      (1) Hoffmann, R.; Alder, R.W.;Wilcox, C. F. J. Am. Chem. Soc. 1970, 92, 4992.  

    2. [2]

      (2) McGrath, M. P.; Radom, L. J. Am. Chem . Soc. 1993, 115, 3320.  

    3. [3]

      (3) Wang, Z. X.; Schleyer, P. V. R. J. Am. Chem. Soc. 2001, 123, 994.  

    4. [4]

      (4) Wang, Z. X.; Schleyer, P. V. R. J. Am. Chem. Soc. 2002, 124, 11979.  

    5. [5]

      (5) Rasmussen, D. R.; Radom, L. Angew. Chem. Int. Edit. 1999, 38, 2876.

    6. [6]

      (6) Li, X.;Wang, L. S.; Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc. 1999, 121, 6033.  

    7. [7]

      (7) Wang, L. S.; Boldyrev, A. I.; Li, X.; Simons, J. J. Am. Chem. Soc. 2000, 122, 7681.  

    8. [8]

      (8) Liang, J. X.; Jia,W. H.; Zhang, C. J.; Cao, Z. X. Acta Phys. -Chim. Sin. 2009, 25, 1847. [梁锦霞, 贾文红, 张聪杰, 曹泽星. 物理化学学报, 2009, 25, 1847.]

    9. [9]

      (9) Sun,W. X.; Zhang, C. J.;Wu, H. S. Acta Phys. -Chim. Sin. 2008, 24, 32. [孙文秀, 张聪杰. 物理化学学报, 2008, 24, 32.]

    10. [10]

      (10) Merino, G.; Mendez-Rojas, M. A.; Vela, A. J. Am. Chem. Soc. 2003, 125, 6026.  

    11. [11]

      (11) Merino, G.; Mendez-Rojas, M. A.; Beltran, H. I.; Corminboeuf, C.; Heine, T.; Vela, A. J. Am. Chem. Soc. 2004, 126, 16160.  

    12. [12]

      (12) Merino, G.; Mendez-Rojas, M. A.; Vela, A.; Heine, T. J. Comput. Chem. 2007, 28, 362.  

    13. [13]

      (13) Keese, R. Chem. Rev. 2006, 106, 4748.

    14. [14]

      (14) Li, S. D.; Guo, J. C.; Miao, C. Q.; Ren, G. M. J. Phys. Chem. A 2005, 109, 4133.  

    15. [15]

      (15) Li, S. D.; Guo, Q. L.; Miao, C. Q.; Ren, G. M. Acta Phys. -Chim. Sin. 2007, 23, 743. [李思殿, 郭巧凌, 苗常青, 任光明. 物理化学学报, 2007, 23, 743.]

    16. [16]

      (16) Roy, D.; Corminboeuf, C.;Wannere, C. S.; King, R. B.; Schleyer, P. V. R. Inorg. Chem. 2006, 45, 8902.  

    17. [17]

      (17) Zhang, C. J.; Sun,W. X.; Cao, Z. X. J. Am. Chem. Soc. 2008, 130, 5638.  

    18. [18]

      (18) Wang, Z. X.; Zhang, C. G.; Chen, Z.; Schleyer, P. V. R. Inorg. Chem. 2008, 47, 1332.  

    19. [19]

      (19) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. V. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.  

    20. [20]

      (20) Boldyrev, A. I.;Wang, L. S. J. Phys. Chem . A 2001, 105, 10759.  

    21. [21]

      (21) Priyakumar, U. D.; Reddy, A. S.; Sastry, G. N. Tetrahedron Lett. 2004, 45, 2495.  

    22. [22]

      (22) Pancharatna, P. D.; Mendez-Rojas, M. A.; Merino, G.; Vela, A.; Hoffmann, R. J. Am. Chem. Soc. 2004, 126, 15309.  

    23. [23]

      (23) Perez, N.; Heine, T.; Barthel, R.; Seifert, G.; Vela, A.; Mendez-Rojas, M. A.; Merino, G. Org. Lett. 2005, 7, 1509.  

    24. [24]

      (24) Esteves, P. M.; Ferreira, N. B. P.; Correa, R. J. J. Am. Chem. Soc. 2005, 127, 8680.  

    25. [25]

      (25) Perez-Peralta, N.; Sanchez, M.; Martin-Polo, J.; Islas, R.; Vela, A.; Merino, G. J. Org. Chem. 2008, 73, 7037.  

    26. [26]

      (26) Zhang, C. J.; Jia,W. H.; Cao, Z. X. J. Phys. Chem . A 2010, 114, 7960.  

    27. [27]

      (27) Zhang, C. J.;Wang, P.; Liang, J. X.; Jia,W. H.; Cao, Z. X. J. Mol. Struct. -Theochem 2010, 941, 41.  

    28. [28]

      (28) Sun,W. X.; Zhang, C. J.; Cao, Z. X. J. Phys. Chem . C 2008, 112, 351.  

    29. [29]

      (29) Exner, K.; Schleyer, P. V. R. Science 2000, 290, 1937.  

    30. [30]

      (30) Wang, Z. X.; Schleyer, P. V. R. Science 2001, 292, 2465.  

    31. [31]

      (31) Liang, J. X.; Zhang, C. J. Acta Chim. Sin. 2010, 68, 7. [梁锦霞, 张聪杰. 化学学报, 2010, 68, 7.]

    32. [32]

      (32) Jamie, K.; Robert, M.; Michael, J. F.; Rik, R. T. Org. Lett. 2008, 10, 2163.  

    33. [33]

      (33) Wiberg, K. B. Tetrahedron 1968, 24, 1083.  

    34. [34]

      (34) Frisch, M. J.; Trucks, G. A.; Schlegel, H. B.; et al . Gaussian 03, Revision C.02; Gaussian, Inc.:Wallingford, CT, 2004.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    7. [7]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    13. [13]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

Metrics
  • PDF Downloads(585)
  • Abstract views(2246)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return