Citation: ZHANG Xiu, WU Dong, TANG Bi-Feng. Vibrational Internal Energy of Chloromethyl Radical Formed by the Photodissociation of CH2BrCl at 265 nm[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1045-1053. doi: 10.3866/PKU.WHXB201203061 shu

Vibrational Internal Energy of Chloromethyl Radical Formed by the Photodissociation of CH2BrCl at 265 nm

  • Received Date: 21 December 2011
    Available Online: 6 March 2012

    Fund Project: 湖北省教育厅科学技术研究项目(Z20082601) (Z20082601)

  • Photodissociation of CH2BrCl was investigated around 265 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of Br (2P1/2) and Br (2P3/2) were analyzed to obtain the corresponding velocity distributions and total translational energy distributions. Using an impulsive model invoking angular momentum conservation, the vibrational internal energy distributions of chloromethyl radical (·CH2Cl) formed by the photodissociation of CH2BrCl, were derived from the total translational energy distributions. In the CH2BrCl+hv→Br (2P1/2)+CH2Cl channel, v4, v3+v4, v2+v4 and v2+v6 vibrational modes were found to be excited in the radical; while in the CH2BrCl+hv→ Br (2P3/2)+CH2Cl channel, the excited vibrational modes were v2+v6, v1+v3, v2+v5, v2+v3+v5, and v1+v5. The results further implied that, following absorption of one photon by the parent molecule CH2BrCl, other vibrational modes besides v5 (CBr stretch) mode, such as v7 (CH2 a-stretch) mode, are excited in the parent molecule.
  • 加载中
    1. [1]

      (1) Barrie, L. A.; Bottenheim, J. W.; Schnell, R. C.; Crutzen, P. J.; Rasamussen, R. A. Nature 1988, 334, 138.  

    2. [2]

      (2) Anderson, J. G.; Toohey, D. W.; Brune, W. H. Science 1991, 251, 39.  

    3. [3]

      (3) Foster, K. L.; Plastridge, R. A.; Bottenheim, J. W.; Shepso, P. B.; Finlayson-Pitts, B.J.; Spicer, C. W. Science 2001, 291, 471.  

    4. [4]

      (4) Zhu, R.; Tang, B.; Zhang, X.; Zhang, B. J. Phys. Chem. A 2010, 114 (21), 6188.  

    5. [5]

      (5) Niu, M. L.; Song, L.; Tang, X. F,; Zhou, X. G.; Liu, S. L.; Liu, F. Y.; Shan, X. B.; Sheng, L. S. Acta Phys. -Chim. Sin. 2011, 27, 1797. [牛铭理, 宋磊, 唐小锋, 周晓国, 刘世林, 刘付轶, 单晓斌, 盛六四. 物理化学学报, 2011, 27, 1797.]

    6. [6]

      (6) u usi, T.; Samartzis, P.C.; Kitsopoulos, T.N. J. Chem. Phys. 1998, 108, 5742.  

    7. [7]

      (7) Liu, Y. Z.; Qin, C. C.; Zhang, S.; Wang, Y. M.; Zhang, B. Acta Phys. -Chim. Sin. 2011, 27, 965. [刘玉柱, 秦朝朝, 张嵩, 王艳梅, 张冰. 物理化学学报, 2011, 27, 965.]

    8. [8]

      (8) Zhang, F.; Wang, Y. M.; Zhang, B.; Feng, W. L. Acta Phys. -Chim. Sin. 2010, 26, 1903. [张锋, 王艳梅, 张冰, 冯文林. 物理化学学报, 2010, 26, 1903.]

    9. [9]

      (9) Zhang, C. H.; Zhang, Y.; Zhang, S.; Zhang, B. Acta Phys. -Chim. Sin. 2009, 25, 1708. [张昌华, 张延, 张嵩, 张冰. 物理化学学报, 2009, 25, 1708.]

    10. [10]

      (10) Cao, Z. Z.; Zhang, C. H.; Wang, Y. M.; Zhang, F.; Hua, L. Q.; Zhang, B. Acta Phys. -Chim. Sin. 2009, 25, 423. [曹振洲张昌华王艳梅张锋华林强张 冰. 物理化学学报, 2009, 25, 423.]

    11. [11]

      (11) Rubio-La , L.; Rodríguez, J. D.; García-Vela, A.; nzález, M. G.; Amaral, G. A.; Bañares, L. Phys. Chem. Chem. Phys. 2011, 13, 8186.

    12. [12]

      (12) Sage, A, G.; Oliver, T. A. A.; Murdock, D.; Crow, M. B.; Ritchie, G. A. D.; Harvey, J. N.; Ashfold, M. N. R. Phys. Chem. Chem. Phys. 2011, 13, 8075.

    13. [13]

      (13) Song, L.; Yu, F.; Wu, L. X.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2011, 27, 801. [宋磊, 于锋, 吴琍霞, 周晓国, 刘世林. 物理化学学报, 2011, 27, 801.]

    14. [14]

      (14) Eppink, A. T. J. B.; Parker. D. H. Rev. Sci. Instrum. 1997, 68(9), 3477.

    15. [15]

      (15) Lin, J. J.; Zhou, J.; Shiu, W,; Liu K. Rev. Sci. Instrum. 2003, 74(4), 2495.

    16. [16]

      (16) Townsend, D.; Minitti, M. P.; Suits A. G. Rev. Sci. Instrum. 2003, 74(4), 2530.

    17. [17]

      (17) Chen, Z.; Liu, F.; Jiang, B.; Yang, X.; Parker. D. H. J. Phys. Chem. Lett. 2010, 1, 1861.  

    18. [18]

      (18) Li, J.; Zhang, C.; Zhang, Q.; Chen, Y.; Huang, C.; Yang. X. J. Chem. Phys. 2011, 135, 116102.  

    19. [19]

      (19) Tang, X.; Zhou, X.; Wu, M.; Liu, S.; Liu, F.; Shan, X.; Sheng. L. J. Chem. Phys. 2012, 136, 034304.  

    20. [20]

      (20) Ratliff, B. J.; Womack, C. C.; Tang, X. N.; Landau, W. L.; Butler,L. J.; Szpunar, D. E. J. Phys. Chem. A 2010, 114, 4934.  

    21. [21]

      (21) Womack, C. C.; Fang, W. H.; Straus, Daniel B.; Butler, L. J. J. Phys. Chem. A 2010, 114, 13005.  

    22. [22]

      (22) Ratliff, B. J.; Alli od, B. W.; Butler, L. J.; Lee, S.-H.; Lin, J. J.-M. J. Phys. Chem. A 2011, 115, 9097.  

    23. [23]

      (23) Womack, C. C.; Booth, R. S.; Brynteson, M. D.; Butler, L. J.; Szpunar, D. J. Phys. Chem. A 2011, 115, 14559.  

    24. [24]

      (24) Tzeng, W. B.; Lee, Y. R.; Lin, S. M. Chem. Phys. Lett. 1994, 227, 467.  

    25. [25]

      (25) Cadman, P.; Simsons, J.P. Trans. Faraday Soc. 1966, 62, 631.  

    26. [26]

      (26) Doucet, J.; Gilbert, R.; Sauvageau, P.; Sandorfy, C. J. Chem. Phys. 1975, 62, 366.  

    27. [27]

      (27) McGivern, W. S.; Li, T.; Zou, P.; North, S. W. J. Chem. Phys. 1999, 111, 5771.  

    28. [28]

      (28) Zou, P.; McGivern, W. S.; North, S. W. Phys. Chem. Chem. Phys. 2000, 2, 3785.

    29. [29]

      (29) Lee, S. H.; Jung, Y. J.; Jung, K. H. Chem. Phys. 2000, 260, 143.  

    30. [30]

      (30) Zhou, J. G.; Lau, K. C.; Hassanein, E.; Xu, H. F.; Tian, S. X.; Jones, B.; Ng, C. Y. J. Chem. Phys. 2006, 124, 34309.  

    31. [31]

      (31) Dahl, D. A.; Appelhans, A. D. SIMION 3D, Version 7.0; Scientific Instrument Services, Inc.: Rin es, USA, 2004.  

    32. [32]

      (32) Jee, Y. J.; Jung, Y. J.; Jung, K. H. J. Chem. Phys. 2006, 115, 9739.

    33. [33]

      (33) Callaghan, R.; rdon, R. J. J. Chem. Phys. 1990, 93, 4624.  

    34. [34]

      (34) Li, J.; Yang, J.; Mo, Y.; Lau, K. C.; Qian, X. M.; Song, Y.; Liu, J.; Ng, C. Y. J. Chem. Phys. 2007, 126, 184304.  

    35. [35]

      (35) Arepalli, S.; Presser, N.; Robie, D.; rdon, R. J. Chem. Phys. Lett. 1985, 117, 64.  

    36. [36]

      (36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    37. [37]

      (37) Whitney, E. S.; Haeber, T.; Schuder, M. D.; Blair, A. C.; Nesbitt, D. J. J. Chem. Phys. 2006, 125, 054303.  

    38. [38]

      (38) Fridgen, T. D.; Zhang, X. K.; Parnis, J. M.; March, R. E. J. Phys. Chem. A 2000, 104, 3487.  

    39. [39]

      (39) Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated; National Bureau of Standards: Gaithersburg, MD, 1972; Vol. I, pp 1-160.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    8. [8]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    9. [9]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    18. [18]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(808)
  • Abstract views(2226)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return