Citation: JIANG Qian, CHU Wei, SUN Wen-Jing, LIU Feng-Si, XUE Ying. A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1101-1106. doi: 10.3866/PKU.WHXB201203054 shu

A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles

  • Received Date: 5 January 2012
    Available Online: 5 March 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB201202)资助 (973) (2011CB201202)

  • In coal, nitrogen exists in a variety of forms. We presented 11 compounds of different hybridization forms and nitrogen contents. Density functional theory (DFT) simulation method was employed to study the adsorption behaviors of methane on these nitrogen-containing organic compounds. The interactions were studied and characterized by their adsorption energies, Mulliken charges and electrostatic potential surfaces. The adsorption energies varied from 3.81 to 6.82 kJ·mol-1, attributable to the weak hydrogen-bonding and electrostatic interactions. The results revealed that the adsorption energy of sp2-N with methane was higher than that of sp3-N and that higher nitrogen contents provided more positive sites for methane adsorption.
  • 加载中
    1. [1]

      (1) Hamelinck, C. N.; Faaij, A. P. C.; Turkenburg, W. C.; van Bergen, F.; Pagnier, H. J. M.; Barzandji, O. H. M.; Wolf, K. H. A. A.; Ruijg, G. J. Energy 2002, 27, 647.  

    2. [2]

      (2) Yu, H. G.; Zhou, G. Z.; Fan, W. T.; Ye, H. P. Int. J. Coal. Geol. 2007, 71, 345.  

    3. [3]

      (3) Wei, X. R.; Wang, G. X.; Massarotto, P.; lding, S. D.; Rudolph, V. Chem. Eng. Sci. 2007, 62, 4193.  

    4. [4]

      (4) Van Bergen, F.; Gale, J.; Damen, K. J.; Wildenborg, A. F. B. Energy 2004, 29, 1611.  

    5. [5]

      (5) Van Bergen, F.; Pagnier, H. J. M.; Krooss, B. M.; Van Der Meer, L. G. H. Greenhouse Gas Control Technologies 2001, 555.  

    6. [6]

      (6) Skhonde, M. P.; Strydom, C. A.; Bunt, J. R.; Schobert, H. H. J. Anal. Appl. Pyrol. 2011, 91, 205.  

    7. [7]

      (7) Kurniawan, Y.; Bhatia, S. K.; Rudolph, V. AICHE J. 2006, 52, 957.  

    8. [8]

      (8) Liu, Y. Y.; Wilcox, J. Environ. Sci. Technol. 2011, 45, 809.  

    9. [9]

      (9) Jiang, W. P.; Cui, Y. J.; Zhang, Q.; Zhong, L. W.; Li, Y. H.; Journal of China Coal Society 2007, 32, 292.

    10. [10]

      (10) Jiang, W. P. China Coalbed Methane 2009, 6, 19.

    11. [11]

      (11) Meng, H. P.; Zhao, W.; Zhang, R. G.; Wang, B. J. Coal Conversion 2008, 31, 31.

    12. [12]

      (12) Knicker, H.; Hatcher, P. G.; Scaroni, A. W. International Journal of Coal Geology 1996, 32, 255.  

    13. [13]

      (13) Wu, D. S.; Lei, J.; Zheng, B. S.; Tang, X. Y.; Wang, M. S.; Hu, J.; Li, S. H.; Wang, B. B.; Finkelman, R. B. Chin. J. Geochem. 2011, 30, 248.  

    14. [14]

      (14) Burchill, P.; Welch, L.S. Fuel 1989, 68, 100.  

    15. [15]

      (15) Boudou, J.; Schimmelmann, A.; Ader, M.; Mastalerz, M.; Sebilo, M.; Gengembre, L. Geochim Cosmochim Ac 2008, 72, 1199.  

    16. [16]

      (16) Valentim, B.; Guedes, A.; Rodrigues, S.; Flores, D. International Journal of Coal Geology 2011, 86, 291.  

    17. [17]

      (17) Perdew, J. P. ; Levy, M. Phys. Rev. B 1997, 56, 16021.  

    18. [18]

      (18) Sun, W. J.; Chu, W.; Yu, L. J.; Jiang, C. F. Chin. J Chem. Phys. 2010, 23, 175.  

    19. [19]

      (19) Zhang, X.; Chu, W.; Chen, J. J.; Dai, X. Y. Acta Phys. -Chim. Sin. 2009, 23, 451. [张旭, 储伟, 陈建钧, 戴晓雁. 物理化学学报, 2009, 23, 451.]

    20. [20]

      (20) Wang, Z. Q.; Sun, W. J.; Chu, W.; Yu, L. J. Acta Phys. -Chim.Sin. 2011, 27, 322. [王志强, 孙文晶, 储伟, 余良军. 物理化学学报, 2011, 27, 322.]

    21. [21]

      (21) Delley, B. J. Chem. Phys. 1990, 92, 508.

    22. [22]

      (22) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A. ; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

    23. [23]

      (23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.  

    24. [24]

      (24) Vogiatzis, K. D.; Mavrandonakis, A.; Klopper, W.; Froudakis, G. E. ChemPhysChem 2009, 10, 374.  

    25. [25]

      (25) Thierfelder, C.; Witte, M.; Blankenburg, S.; Rauls, E.; Schmidt, W. G. Surf. Sci. 2011, 605, 746.  

    26. [26]

      (26) Mullins, O. C.; Kirtley, S. M.; Elp, J. V.; Cramer, S. P. Applied Spectroscopy 1993, 47, 1268.  

    27. [27]

      (27) Deng, D.; Pan, X.; Yu, L. ; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X.; Xue, Q.; Sun, G.; Bao, X. Chem. Mater. 2011, 23, 1188.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(824)
  • Abstract views(3425)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return