Citation: LI Lan, HU Geng-Shen, LU Ji-Qing, LUO Meng-Fei. Review of Oxygen Vacancies in CeO2-doped Solid Solutions as Characterized by Raman Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1012-1020. doi: 10.3866/PKU.WHXB201203052 shu

Review of Oxygen Vacancies in CeO2-doped Solid Solutions as Characterized by Raman Spectroscopy

  • Received Date: 18 November 2011
    Available Online: 5 March 2012

    Fund Project: 国家自然科学基金(20703039, 21173195)资助项目 (20703039, 21173195)

  • This review summarizes the current status of the evolution and observation of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy. Three Raman peaks at 465, 560, and 600 cm-1 are ascribed to the F2g symmetrical stretching vibration mode of CeO2 in a fluorite structure, oxygen vacancies, and a MO8-type complex, respectively. The presence of oxygen vacancies was related to the ionic valence states of the dopant, while the MO8-type complex was associated with the ionic radii of the dopant. The oxygen vacancy concentration correlated with the sample absorbance and the surface enrichment of oxygen vacancies. The in situ Raman spectroscopic investigations show that the atmospheric composition and temperature had a large influence on the absorbance of the samples, which in turn alters the detection depth of the Raman laser and the observed oxygen vacancy concentration.
  • 加载中
    1. [1]

      (1) Reddy, B. M.; Bharali, P.; Saikia, P.; Ataulah, K.; Loridant, S.; Muhler, M.; Grünert,W. J. Phys. Chem. C 2007, 111, 1878.  

    2. [2]

      (2) Wang, X. Q.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martínez-Arias, A.; Fernández-García, M. J. Phys. Chem. B 2006, 110, 428.  

    3. [3]

      (3) Park, S.; Vohs, J. M.; rte, R. J. Nature 2000, 404, 265.  

    4. [4]

      (4) rte, R. J.; Vohs, J. M.; Mclntosch, S. Solid State Ionics 2004, 175, 1.  

    5. [5]

      (5) Mori, T.; Drennan, J. J. Electroceram. 2006, 17, 749.  

    6. [6]

      (6) Liu, L.; Tang, C. Q. J. Power Sources (China) 2001, 25, 428.

    7. [7]

      (7) Monte, R. D.; Kaspar, J. Top. Catal. 2004, 28, 47.  

    8. [8]

      (8) Trovarelli, A. Catal. Rev. Sci. Eng. 1996, 38, 439.  

    9. [9]

      (9) Jin, X. L.; Meng, M. Chinese Chemical Industry and Engineering 2007, 27, 345. [金向亮, 孟明. 化学工业与工程, 2007, 27, 345.]

    10. [10]

      (10) Song, Z. X.; Liu,W.; Nishiguchi. H.; Takami, A.; Nagaoka, K.; Takita, Y. Appl. Catal. A: Gen. 2007, 329, 86.  

    11. [11]

      (11) McBride, J. R.; Hass, K. C.; Poindexter, B. D. ;Weber,W. H. J. Appl. Phys. 1994, 76, 2435.  

    12. [12]

      (12) He, H.; Dai, H. X.; Au, C. T. Catal. Today 2004, 90, 245.  

    13. [13]

      (13) Xiao, G. L.; Li, S.; Li, H.; Chen, L. Q. Microporous and Mesoporous Mater. 2009, 120, 426.  

    14. [14]

      (14) Hennings, U.; Reimert, R. Appl. Catal. A 2007, 325, 41.  

    15. [15]

      (15) Zhou, G.; rte, R. J. J. Phys. Chem. B 2008, 112, 9869.  

    16. [16]

      (16) Daturi, M.; Finocchio, E.; Binet, C.; Lavalley, J. C.; Fally, F.; Perrichon, V.; Vidal, H.; Hickey, N.; Kaspar, J. J. Phys. Chem. B 2000, 104, 9186.  

    17. [17]

      (17) Kozlov, A. I.; Kim, D. H.; Yezerets, A.; Andersen, P.; Kung, H. H.; Kung, M.C. J. Catal. 2002, 209, 417.  

    18. [18]

      (18) Thangadurai, V.; Kopp, P. J. Power Sources 2007, 168, 178.  

    19. [19]

      (19) Etsell, T. H.; Flengas, S. N. Chem. Rev. 1970, 70, 339.  

    20. [20]

      (20) Li, S. P.; Lu, J. Q.; Fang, P.; Luo, M. F. J. Power Sources 2009, 193, 93.  

    21. [21]

      (21) Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura S. Chem. Mater. 2004, 16, 2317.  

    22. [22]

      (22) Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Surf. Sci. Rep. 2007, 62, 219.  

    23. [23]

      (23) Popovi?, Z. V.; Dohcevi?-Mitrovi?, Z.; Konstantinovi?, M. J.; S?epanovi?, M. J. Raman Spectrosc. 2007, 38, 750.  

    24. [24]

      (24) Thomas, J. M.; Thomas,W. J. Principles and Practice of Heterogeneous Catalysis; New York:Wiley-VCH, 1997; pp 257-275.

    25. [25]

      (25) Knozinger, H.; Mestl, G.. Top. Catal. 1999, 8, 45.  

    26. [26]

      (26) Banares, M. A.;Wachs, I. E. J. Raman. Spectrosc. 2002, 33, 359.  

    27. [27]

      (27) Wachs, I. E. Top. Catal. 1999, 8, 57.  

    28. [28]

      (28) Li, C.; Li, M. J. J. Mol. Catal.(China) 2003, 17, 213. [李灿, 李美俊. 分子催化, 2003, 17, 213.]

    29. [29]

      (29) Xiong, G.; Feng, Z.; Li, J.; Yang, Q. H.; Ying, P. L.; Xin, Q.; Li, C. J. Phys. Chem. B 2000, 104, 3581.  

    30. [30]

      (30) Xiong, G.; Yu, Y.; Feng, Z. C.; Xin, Q.; Xiao, F. S.; Li, C. Microporous Mesoporous Mater. 2001, 42, 317.  

    31. [31]

      (31) Wang, L.; Hall,W. K. J. Catal. 1983, 82, 177.  

    32. [32]

      (32) Schrader, G. L.; Cheng, C. P. J. Catal. 1983, 80, 369.  

    33. [33]

      (33) Vuurman, M. A.;Wachs, I. E. J. Phys. Chem. 1992, 96, 5008.  

    34. [34]

      (34) Weckhuysen, B. M.;Wachs, I . E. J. Phys. Chem. B 1997, 101, 2793.  

    35. [35]

      (35) Weckhuysen, B. M.;Wachs, I. E. J. Phys. Chem. 1996, 100, 14437.  

    36. [36]

      (36) Li, M. J.; Feng, Z. C.; Zhang, J.; Ying, P. L.; Xin, Q.; Li, C. Chin. J. Catal. 2003, 24, 861. [李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿. 催化学报, 2003, 24, 861.]

    37. [37]

      (37) Li, M. J.; Feng, Z. C.; Xiong, G.; Ying, P. l.; Xin, Q.; Li, C. J. Phys. Chem. B 2001, 105, 8107.  

    38. [38]

      (38) Weng,W. Z.;Wan, H. L.; Li, M. J.; Cao, Z. X. Angew. Chem. Int. Edit. 2004, 43, 975.  

    39. [39]

      (39) Fan, F. T. ; Feng, Z. C. ; Li, G. N.; Sun, K. J.; Ying, P. L.; Li, C. Chem. Eur. J. 2008, 14, 5125.  

    40. [40]

      (40) Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.  

    41. [41]

      (41) Pu, Z. Y.; Lu, J. Q.; Luo, M. F.; Xie, Y. L. J. Phys. Chem. C 2007, 111, 18695.  

    42. [42]

      (42) Guo, M.; Lu, J. Q.; Bi, Q. Y.; Luo, M. F. Chem.Phys.Chem. 2010, 11, 1693.

    43. [43]

      (43) Kobayashi, T.;Wang, S.; Dokiya, M.; Tagawa, H.; Hashimotom, T. Solid State Ionics 1999, 126, 349.  

    44. [44]

      (44) Shuk, P.; Greenblatt, M. Solid State Ionics 1999, 116, 217.  

    45. [45]

      (45) Luo, M. F.; Lu, G. L.; Zheng, X. M.; Zhong, Y. J.;Wu, T. H. J. Mater. Sci. Lett. 2000, 19, 1351.  

    46. [46]

      (46) Keramidas, V. G.; White,W. B. J. Chem. Phys. 1973, 59, 1561.  

    47. [47]

      (47) Nakajima, A.; Yoshihara, A.; Ishigame, M. Phys. Review B, 1994, 50, 13297.  

    48. [48]

      (48) Taniguchi, T.;Watanabe, T.; Sugiyama, N.; Subramani, A. K.; Wagata, H.; Matsushita, N.; Yoshimura, M. J. Phys. Chem. C 2009, 113, 19789.  

    49. [49]

      (49) Li, L.; Chen, F.; Lu, J. Q.; Luo, M. F.; J. Phys. Chem. A 2011, 115, 7972.  

    50. [50]

      (50) Wu, Z. L.; Li, M. J.; Howe, J.; Meyer, H. M. III; Overbury, S. H. Langmuir 2010, 26, 16595.  

    51. [51]

      (51) Lee, Y.; He, G.; Akey, A. J; Si, R.; Flytzani-Stephanopoulos, M.; Herman, I. P. J. Am. Chem. Soc. 2011, 133, 12952.  

    52. [52]

      (52) Luo, M. F.; Yan, Z. L.; Jin, L. Y.; He, M. J. Phys. Chem. B 2006, 110, 13068.

    53. [53]

      (53) Ou, D. R.; Mori, T.; Ye, F.; Kobayashi, T. Appl. Phys. Lett. 2006, 89, 171911-1.  

    54. [54]

      (54) Li, L.; Guo, M.; Pu, Z. Y.; Lu, J. Q.; Luo, M. F. Chin. J. Inorg. Chem. 2011, 27, 840. [李岚, 郭明, 普志英, 鲁继青, 罗孟飞. 无机化学学报, 2011, 27, 840.]

    55. [55]

      (55) Guo, M.; Lu, J. Q.;Wu, Y. N.;Wang, Y. J.; Luo, M. F.; Langmuir 2011, 27, 3872.  

    56. [56]

      (56) Ye, F.; Mori, T.; Ou, D. R.; Cormack, A. N. Solid State Ionics 2009, 180, 1127.  

    57. [57]

      (57) Guzman, J.; Carrettin, S.; Fierro- nzalez, J. C.; Hao, Y.; Gates, B. C.; Corma, A. Angew. Chem. Int. Edit. 2005, 44, 4778.  

    58. [58]

      (58) Shapovalov, V.; Metiu, H. J. Catal. 2007, 245, 205.  

    59. [59]

      (59) Shapovalov, V.; Carrettin, S.; Corma, A. J. Am. Chem. Soc. 2005, 127, 3286.  

    60. [60]

      (60) Yan, Z. L.; Lin, X.; Luo, J. H.; Xie, G. Q.; Luo, M. F. Chin. J. Inorg. Mater. 2005, 20, 653. [闫宗兰, 林霞, 罗建海, 谢冠群, 罗孟飞. 无机材料学报, 2005, 20, 653.]

    61. [61]

      (61) Pu, Z. Y.; Liu, X. S.; Jia, A. P.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. J. Phys. Chem. C 2008, 112, 15045.  

    62. [62]

      (62) Li, H. F.; Zhang, N.; Chen, P.; Luo, M. F.; Lu, J. Q. Appl. Catal. B 2011, 110, 279.  

    63. [63]

      (63) Meng, L.; Jia, A. P.; Lu, J. Q.; Luo, L. F.; Huang,W. X.; Luo, M. F. J. Phys. Chem. C 2011, 115, 19789.  

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    8. [8]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    9. [9]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    10. [10]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    20. [20]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

Metrics
  • PDF Downloads(1644)
  • Abstract views(2728)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return