Citation: ZHANG Hua, HU Yao-Juan, WU Ping, ZHANG Hui, CAI Chen-Xin. Preparation of an Ultrahigh Aspect Ratio Anodic Aluminum Oxide Template for the Fabrication of Ni Nanowire Arrays[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1545-1550. doi: 10.3866/PKU.WHXB201203026 shu

Preparation of an Ultrahigh Aspect Ratio Anodic Aluminum Oxide Template for the Fabrication of Ni Nanowire Arrays

  • Received Date: 16 December 2011
    Available Online: 2 March 2012

    Fund Project: 国家自然科学基金(20905036, 21175067) (20905036, 21175067) 高等学校博士学科点专项科研基金(20103207110004) (20103207110004) 江苏省自然科学基金(BK2011779) (BK2011779) 江苏省高校自然科学研究项目(09KJA150001, 09KJB150006, 10KJB150009) (09KJA150001, 09KJB150006, 10KJB150009)

  • This work reports a two-step constant-current anodization approach for the fabrication of an anodic aluminum oxide (AAO) template having an aspect ratio>1000. The effects of oxidation current densities and oxidation time on the morphologies, pore size, and thickness of AAO templates were studied. The results indicated that the morphology and thickness were significantly affected by both the oxidation time and the oxidation current density. High-quality AAO templates with 150-200 nm pore sizes, 200 μm thicknesses, and 1000-1300 aspect ratios could be prepared under a constant-current density of 8 mA?cm-2 and an oxidation time of 18 h. Using the AAO template, Ni nanowire arrays were fabricated by electrochemical deposition and were characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) techniques. The Ni nanowire arrays were parallel to each other, with diameters of 150 nm, lengths of 180-200 μm, and aspect ratios of 1200-1300. These parameters compared favorably with those of the AAO template, thus indicating that it can be used for preparation of one-dimensional nanowire arrays with an ultrahigh aspect ratio. The effects of the aspect ratios on the magnetic characteristics of the Ni nanowire arrays were examined by comparing their coercivities and remanence ratios in parallel and perpendicular directions, respectively. The results indicated that Ni nanowire arrays with an aspect ratio >1000 clearly displayed a magnetic anisotropy, while the arrays with an aspect ratio of 200 did not. Thus an AAO template with an ultrahigh aspect ratio can be fabricated using a two-step constant-current anodization method, and that the AAO template may find applications in the fabrication of one-dimensional, high-aspect ratio nanowire arrays with special optical and magnetic properties.
  • 加载中
    1. [1]

      (1) Xu, S.; Adiga, N.; Ba, S.; Dasgupta, T.; Wu, C. F. J.; Wang, Z. L. ACS Nano 2009, 3, 1803.  

    2. [2]

      (2) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327.  

    3. [3]

      (3) Zeeshan, M. A.; Shou, K.; Pané, S.; Pellicer, E.; Sort, J.; Sivaraman, K. M.; Baró, M. D.; Nelson, B. J. Nanotechnology 2011, 22, 275713.  

    4. [4]

      (4) Shi, J. B.; Chen, Y. C.; Lee, C. W.; Lin, Y. T.; Wu, C.; Chen, C. J. Mater. Lett. 2008, 62, 15.  

    5. [5]

      (5) Guo, S. J.; Dong, S. J.; Wang, E. K. Chem. Commun. 2010, 46, 1869.  

    6. [6]

      (6) Cheng, F. L.; Dai, X. C.; Wang, H.; Jiang, S. P.; Zhang, M.; Xu, C. W. Electrochim. Acta 2010, 55, 2295.  

    7. [7]

      (7) Cheng, D.; Hou, M. Eur. Phys. J. B 2010, 74, 379.  

    8. [8]

      (8) odey, A. P.; Eichfeld, S. M.; Lew, K. K.; Redwing, J. M.; Mallouk, T. E. J. Am. Chem. Soc. 2007, 129, 12344.  

    9. [9]

      (9) Cai, C. X.; Chen, J. Acta Chim. Sin. 2004, 62, 335. [蔡称心, 陈静. 化学学报, 2004, 62, 335.]

    10. [10]

      (10) Du, P.; Shi, Y. M.; Wu, P.; Zhou, Y. M.; Cai, C. X. Acta Chim. Sin. 2007, 65, 1. [杜攀, 石彦茂, 吴萍, 周耀明, 蔡称心. 化学学报, 2007, 65, 1.]

    11. [11]

      (11) Lü, Y. F.; Cai, C. X. Acta Chim. Sin. 2006, 64, 2396. [吕亚芬, 蔡称心. 化学学报, 2006, 64, 2396.]

    12. [12]

      (12) Meng, L.; Yang, L. G.; Zhou, B.; Cai, C. X. Nanotechnology 2009, 20, 035502.  

    13. [13]

      (13) Xia, Y. N.; Yang, P. D.; Sun, T. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. Adv. Mater. 2003, 15, 353.  

    14. [14]

      (14) Lü, Y. F.; Yin, Y. J.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2007, 23, 5. [吕亚芬, 印亚静, 吴萍, 蔡称心. 物理化学学报, 2007, 23, 5.]  

    15. [15]

      (15) Zhang, S. Y.; Li, W. Y.; Li, C. S.; Chen, J. J. Phys. Chem. B 2006, 110, 24855.  

    16. [16]

      (16) Boyle, T. J.; Coker, E. N.; Zechmann, C. A.; Voigt, J. V.; Rodriguez, M. A.; Kemp, R. A. Chem. Mater. 2003, 15, 305.  

    17. [17]

      (17) Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.  

    18. [18]

      (18) Landoulsi, J.; Demoustier-Champagne, S.; Dupont-Gillain, C. Soft Matter 2011, 7, 3337.  

    19. [19]

      (19) Zhao, M.; Wu, X. M.; Cai, C. X. J. Phys. Chem. C 2009, 113, 4987.  

    20. [20]

      (20) Wang, M. H.; Li, Y. J.; Xie, Z. X.; Liu, C.; Yeung, E. S. Mater. Chem. Phys. 2010, 119, 153.  

    21. [21]

      (21) Wang, Z. Y.; Liu, S. N.; Wu, P.; Cai, C. X. Anal. Chem. 2009, 81, 1638.  

    22. [22]

      (22) Shi, Y. M.; Zhou, B.; Wu, P.; Wang, K. Y.; Cai, C. X. J. Eelectroanal. Chem. 2007, 611, 1.  

    23. [23]

      (23) Masuda, H.; Fukuda, K. Science 1995, 268, 1466.  

    24. [24]

      (24) Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.  

    25. [25]

      (25) Cepak, V. M.; Martin, C. R. Chem. Mater. 1999, 11, 1363.  

    26. [26]

      (26) Sapp, S. A.; Mitchell, D. T.; Martin, C. R. Chem. Mater. 1999, 11, 1183.  

    27. [27]

      (27) Yang, C. M.; Sheu, H. S.; Chao, K. J. Adv. Funct. Mater. 2002, 12, 143.  

    28. [28]

      (28) Lee, K. B.; Lee, S. M.; Cheon, J. Adv. Mater. 2001, 13, 517.  

    29. [29]

      (29) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771.  

    30. [30]

      (30) Jana, N. R.; Gearheart, L.; Murphy, C. T. Chem. Commun. 2001, 617.

    31. [31]

      (31) Juárez, J.; Cambón, A.; Topete, A.; Taboada, P.; Mosquera, V. Chem. Eur. J. 2011, 17, 7366.  

    32. [32]

      (32) Choi, M. K.; Yoon, H.; Lee, K.; Shim, K. Langmuir 2011, 27, 2132.  

    33. [33]

      (33) Nieisch, K.; Wehrspohn, R. B.; Barthel, J.; Kirschner, J.; sele, U.; Fischer, S. F.; Kronmüller, H. Appl. Phys. Lett. 2001, 79, 1360.  

    34. [34]

      (34) Jessensky, O.; Muller, F.; sele, U. Appl. Phys. Lett. 1998, 72, 1173.  

    35. [35]

      (35) Tu, J. P.; Jiang, C. X.; Guo, S. Y.; Fu, M. F. Mater. Sci. Eng. A 2005, 398, 241.  

    36. [36]

      (36) Wang, H.; Yi, H.; Wang, H. Appl. Surf. Sci. 2005, 252, 1662.  

    37. [37]

      (37) Hua, Z. H.; Chen, R. S.; Li, C. L.; Yang, S. G.; Lu, M.; Gu, B. X.; Du, Y. W. J. Alloy. Compd. 2007, 427, 199.  

    38. [38]

      (38) Tu, J. P.; Jiang, C. X.; Guo, S. Y.; Zhao, X. B.; Fu, M. F. Wear 2005, 259, 759.  

    39. [39]

      (39) Zhang, K.; Yue, Q. L.; Chen, G. F.; Zhai, Y. L.; Wang, L.; Wang, H. S.; Zhao, J. S.; Liu, J. F.; Jia, J. B.; Li, H. B. J. Phys. Chem. C 2011, 115, 379.  

    40. [40]

      (40) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714.  

    41. [41]

      (41) Nielsch, K.; Wehrspohn, R. B.; Barthel, J.; Kirschner, J.; sele,U.; Ficher, S. F.; Kronmuller, H. Appl. Phys. Lett. 2001, 79, 1360.  

    42. [42]

      (42) Ounadjela, K.; Ferré, R.; Louail, L.; George, J. M.; Maurice, J. L. J. Appl. Phys. 1997, 81, 5455.  

    43. [43]

      (43) Skomski, R.; Zeng, H.; Zheng, M.; Sellmyer, D. J. Phys. Rev. B 2000, 62, 3900.

  • 加载中
    1. [1]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    2. [2]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    16. [16]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(939)
  • Abstract views(2876)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return