Citation: ZHANG Jian-Hua, LIU Qiong, CHEN Yu-Miao, LIU Zhao-Qing, XU Chang-Wei. Determination of Acid Dissociation Constant of Methyl Red by Multi-Peaks Gaussian Fitting Method Based on UV-Visible Absorption Spectrum[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1030-1036. doi: 10.3866/PKU.WHXB201203025 shu

Determination of Acid Dissociation Constant of Methyl Red by Multi-Peaks Gaussian Fitting Method Based on UV-Visible Absorption Spectrum

  • Received Date: 22 December 2011
    Available Online: 2 March 2012

    Fund Project: 国家自然科学基金(20903028) (20903028) 留学回国人员科研启动基金及羊城学者青年科研骨干培养对象项目(10A041G)资助 (10A041G)

  • UV-visible electronic absorption spectra of methyl red aqueous solutions are characterized by the overlap of a principal peak at λmax ((520±15) nm) with a shoulder peak at λmax ((435±20) nm), which are assigned to acidic species (HMR) and basic species (MR-) of methyl red, respectively. In this study, the spectra and the integrated absorbance of the MR- and HMR peaks (denoted A1 and A2, respectively) were interpreted using a new multi-peaks Gaussian fitting method. From the absorbance ratio A1/A2 and the concentration ratio cMR-/cHMR, the average acid dissociation constant (pKa) was determined as 4.76 at 298.15 K. The odness is high and the values of R2 (degree of fitting) and χ2 (chi-square test for odness of fit) were 0.998 and below 10-5, respectively. The effects of aggregation behavior of sodium dodecyl sulfate (SDS) and cetylammonium bromide (CTAB) on pKa were also investigated via this method. The multi-peaks Gaussian fitting method was shown to determine pKa more reliably and simply than traditional spectrophotometric techniques.
  • 加载中
    1. [1]

      (1) Kara, D.; Alkan, M. Spectrochim. Acta A 2000, 56, 2753.  

    2. [2]

      (2) Niyazi, A.; Yazdanipour, A.; Ramezani, M. Chin. Chem. Lett. 2007, 18, 989.  

    3. [3]

      (3) Babic, S.; Horvat, A. J. M.; Pavlovic, D. M.; Kastelan-Macan, M. Trends Anal. Chem. 2007, 26, 1043.  

    4. [4]

      (4) Allen, R. I.; Box, K. J.; Comer, J. E. A.; Peake, C.; Tam, K.Y. J. Pharmaceut. Biomed. Anal. 1998, 17, 699.  

    5. [5]

      (5) Beltran, J. L.; Sanli, N.; Fonrodona, G.; Barron, D.; Ozkanb, G.; Barbosa, J. Anal. Chim. Acta. 2003, 484, 253.  

    6. [6]

      (6) Erdemgil, F. Z.; Sanli, S.; Sanli, N.; Ozkan, G.; Barbosa, J.; Guiteras, J.; Beltran, J. L.Talanta. 2007, 72, 489.  

    7. [7]

      (7) Tang, R. C.; Tang, H.; Yang, C. Ind. Eng. Chem. Res. 2010, 49, 8894.  

    8. [8]

      (8) Simon, E. W.; Beevers, H. New Phytol. 1952, 51, 163.  

    9. [9]

      (9) Adam, R. S., Jr. Res. Rev. 1973, 47, 1.

    10. [10]

      (10) Weber, J. B. Adv. Chem. Ser. 1972, 111, 55.  

    11. [11]

      (11) Halling-Sørensen, B.; Nielsen, S. N.; Lanzky, P. F.; Ingerslev, F.; Lutzhoft, H. C. H.; Jørgensen, S. E. Chemosphere. 1998, 36, 357.  

    12. [12]

      (12) Burns, D. C.; Ellis, D. A.; Li, H. X.; McMurdo, C. J.; Webster, E. Environ. Sci. Technol. 2008, 42, 9283.  

    13. [13]

      (13) Lin, J. H.; Lu, A. Y. Pharmacol. Rev. 1997, 49, 403.

    14. [14]

      (14) Frey, P. A.; Kokesh, F. O.; Westheimer, F. H. J. Am. Chem. Soc. 1971, 93, 7266.  

    15. [15]

      (15) Poole, S. K.; Patel, S.; Dehring, K.; Workman, H.; Poole, C. F. J. Chromatogr. A 2004, 1037, 445.  

    16. [16]

      (16) Hardcastle, J. E.; Jano, I. J. Chromatogr. B 1998, 717, 39.  

    17. [17]

      (17) Ye, L.; Zhu, Q. Q.; Wu, S. K. Acta Phys. -Chim. Sin. 1987, 3, 272. [叶玲, 朱琴琴, 吴世康. 物理化学学报, 1987, 3, 272.]

    18. [18]

      (18) Qiang, Z.; Adams, C. Water Res. 2004, 38, 2874.  

    19. [19]

      (19) Zhang, W. M.; Yang, Z. D.; Liu, J.; Sun, Z. X. Acta Phys. -Chim. Sin. 2010, 26, 2109. [张卫民, 杨振东, 刘嘉, 孙中溪. 物理化学学报, 2010, 26, 2109.]

    20. [20]

      (20) Li, L. F.; Hou W. G.; Jiao Y. N.; Liu C. X. Acta Phys. -Chim. Sin., 2004, 20, 459. [李丽芳, 侯万国, 焦燕妮, 刘春霞. 物理化学学报, 2004, 20, 459.]

    21. [21]

      (21) Zhang, X. D.; Liu, Y.; Sun, J. Y.; Liu, Q. T. Acta Phys. -Chim. Sin., 2000, 16, 351. [张向东, 刘岩, 孙锦玉, 刘祁涛. 物理化学学报,. 2000, 16, 351]

    22. [22]

      (22) Kolthoff, I. M.; Chantooni, M. K. J. Phys. Chem. 1966, 70, 856.  

    23. [23]

      (23) Nag, S.; Datta, D. Indian. J. Chem. 2007, 46A, 1263.

    24. [24]

      (24) Wan, H.; Holmen, A. G.; Wang, Y.; Lindberg, W.; Englund, M.; Nagard, M. B.; Thompson, R. A. Rapid Commun. Mass Sp. 2003, 17, 2639.  

    25. [25]

      (25) Szakacs, Z.; Hagele, G. Talanta 2004, 62, 819.  

    26. [26]

      (26) Rabenstein, D. L.; Hari, S. P.; Kaerner, A. Anal. Chem. 1997, 69, 4310.  

    27. [27]

      (27) Rabenstein, D. L.; Sayer, T. L. Anal. Chem. 1976, 48, 1141.  

    28. [28]

      (28) Wang, J.; Rabenstein, D. L. Anal. Chem. 2007, 79, 6799.  

    29. [29]

      (29) Oumada, F. Z.; Rafols, C.; Roses, M.; Bosch, E. J. Pharm. Sci. 2002, 91, 991.  

    30. [30]

      (30) Lebrón-Paler, A.; Pemberton, J. E. Anal. Chem. 2006, 78, 7649.  

    31. [31]

      (31) Lachenwitzer, A.; Li, N.; Lipkowski, J. J. Electroanal. Chem. 2002, 532, 85.  

    32. [32]

      (32) Edwards, H. G. M. Spectrochim. Acta A 1989, 45, 715.  

    33. [33]

      (33) Cagigal, E.; nzalez, L.; Alonso, R. M.; Jimenez, R. M. J. Pharmaceut. Biomed. Anal. 2001, 26, 477.  

    34. [34]

      (34) Ferrari, V.; Cutler, D. J. J. Pharmaceut. Sci. 1987, 76, 554.  

    35. [35]

      (35) Cessna, A. J.; Grover, R. J. Agric. Food Chem. 1978, 26, 289.  

    36. [36]

      (36) Foulon, C.; Duhal, N.; Lacroix-Callens, B.; Vaccher, C.; Bonte, J. P.; ossens, J. F. Eur. J. Pharm. Sci. 2007, 31, 165.  

    37. [37]

      (37) Barbosa, J.; Barron, D.; Jimenez-Lozano, E.; Sanz-Nebot, V. Anal. Chim. Acta. 2001, 437, 309.  

    38. [38]

      (38) Jang, Y. H.; Hwang, S. G.; Chang, S. B.; Ku, J.; Chung, D. S. J. Phys. Chem. A .2009, 113, 13036.  

    39. [39]

      (39) Tobey, S. W. J. Chem. Educ. 1958, 35, 514.  

    40. [40]

      (40) Tam, K. Y.; Takacs-Novak, T. Anal. Chim. Acta 2001, 434, 157.  

    41. [41]

      (41) Tam, K. Y.; Hadley, M.; Patterson, W. Talanta 1999, 49, 539.  

    42. [42]

      (42) Khalafi, L.; Rohani, M.; Afkhami, A. J. Chem. Eng. Data 2008, 53, 2389.  

    43. [43]

      (43) Zarei, K.; Atabati, M.; Abdinasab, E. E. J. Anal. Chem. 2009, 4, 314.

    44. [44]

      (44) Jimenez-Lozano, E.; Marques, I.; Barron, D.; Beltran, J. L.; Barbosa, J. Anal. Chim. Acta. 2002, 464, 37.  

    45. [45]

      (45) Li, X. G.; Zhang, J. H. ; Liu, Z. Q.; Chen, S.; Su, Y. Z.; Xu, C. W. Global J. Phys. Chem. 2011, 2, 34.

    46. [46]

      (46) Zhang, J. H.; Kong, K. Q.; He, Z. L.; Liu, Z. L. Spectroscopy and Spectral Analysis 2007, 27, 1412. [张建华, 孔凯清, 何争玲, 刘自立. 光谱学与光谱分析, 2007, 27, 1412]

    47. [47]

      (47) Feng, W. S.; Fang, Y.; Xu, J. X.; Fang, C. H.; Jia, Q. J., Wang, H. H; Jiang, X. M. Acta Phys. -Chim. Sin., 2008, 24, 497. [冯望生, 房艳, 徐继香, 房春晖, 贾全杰, 王焕华, 姜晓明. 物理化学学报, 2008, 24, 497.]

    48. [48]

      (48) Patterson, G. S. J. Chem. Educ. 1999, 76, 395.  

    49. [49]

      (49) Ehlerova, J.; Trevani, L.; Sedlbauer, J. J. Sol. Chem. 2008, 37, 857.  

    50. [50]

      (50) Mukerjee, P.; Mysels, K. National Standards Reference, Data Series; National Bureau of Standards. US. vernment Printing Office: Washington, D.C., U. S., 1971; Vo1. 36, pp 8–71.

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    14. [14]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    17. [17]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    18. [18]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(2107)
  • Abstract views(8735)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return