Citation: CAO Zhen-Feng, CHEN Qi-Bin, LU Yun-Xiang, LIU Hong-Lai, HU Ying. Electronic Absorption Spectra of Meso-Substituted Porphyrins and Their Zinc Derivatives[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1085-1093. doi: 10.3866/PKU.WHXB201203024 shu

Electronic Absorption Spectra of Meso-Substituted Porphyrins and Their Zinc Derivatives

  • Received Date: 12 December 2011
    Available Online: 2 March 2012

    Fund Project: 国家自然科学基金(20806025, 21103047) (20806025, 21103047)中国高校111计划(B08021)资助项目 (B08021)

  • Meso-substituted porphyrin derivatives have demonstrated great potential as sensing materials for toxic gas detection. In this paper, density functional theory (DFT) and its time-dependent DFT approach (TD-DFT) were employed to investigate the ultraviolet-visible (UV-Vis) or the near-ultravioletvisible (near-UV-Vis) absorption spectra of Meso-tetra (o-nitrophenyl/o-aminophenyl) porphyrins (NO2PP, NH2PP) and their corresponding zinc derivatives, NO2ZnPP and NH2ZnPP. The geometry optimizations for these four molecules were obtained from two different exchange-correlation functionals, the generalizedgradient approximation functional PBE (Perdew-Burke-Ernzerhof) and the hybrid functional B3LYP (Becke, three-parameter, Lee-Yang-Parr). The excitation energies and oscillation strengths were obtained from TD-DFT calculations. Calculations show that the optical absorptions are associated with numerous electronic transitions. In addition, the PBE-predicted wavelengths of the B and Q bands are more consistent with experiment than those predicted by B3LYP. The B band of NO2-substituted derivative exhibits a bathochromic shift different from that of NH2-containing material, also consistent with experimental results. In addition, at the PBE/6-31G(d) level of theory, the calculated energies of the lowest triplet excited states of NO2PP, NH2PP, NO2ZnPP, and NH2ZnPP are 1.426, 1.469, 1.608, and 1.581 eV, respectively.
  • 加载中
    1. [1]

      (1) Lanzo, I.; Russo, N.; Sicilia, E. J. Phys. Chem. B 2008, 112, 4123.  

    2. [2]

      (2) Petsalakis, I. D.; Tagmatarchis, N.; Theodorakopoulos, G. J. Phys. Chem. C 2007, 111, 14139.  

    3. [3]

      (3) Liao, M. S.; Watts, J. D.; Huang, M. J. J. Phys. Chem. A 2006, 110, 13089.  

    4. [4]

      (4) Hasegawa, J.; Ohkawa, Y.; Hada, M.; Nakatsuji, H. J. Phys. Chem. B 1998, 102, 1320.  

    5. [5]

      (5) Ricciardi, G.; Rosa, A.; Baerends, E. J.; van Gisbergen, S. A. J. J. Am. Chem. Soc. 2002, 124, 12319.  

    6. [6]

      (6) Rubio, M.; Roos, B. O.; Serrano-Andrés, L.; Merchán, M. J. Chem. Phys. 1999, 110, 7202.  

    7. [7]

      (7) uterman, M. The Porphyrins; Dolphin, D. Ed.; Academic Press, New York, 1978; Vol. 3, pp 1–165.

    8. [8]

      (8) Sundholm, D. Chem. Phys. Lett. 1999, 302, 480.  

    9. [9]

      (9) Walsh, P. J.; rdon, K. C.; Officer, D. L.; Campbell, W. M. J. Mol. Struct . -Theochem 2006, 759, 17.  

    10. [10]

      (10) Galasso, V.; Kovac, B.; Modelli, A. Chem. Phys. 2007, 335, 141.  

    11. [11]

      (11) Xu, S. C.; Zhang, H. J.; Sun, Z. Y.; Feng, J.; Ai, X. C.; Zhang, Q. Y.; Zhang, X. K. Acta Phys. -Chim. Sin. 2001, 17, 879. [徐四川, 张慧娟, 孙照勇, 冯娟, 艾希成, 张启元, 张兴康, 刘彦钦, 韩士田. 物理化学学报, 2001, 17, 879.]

    12. [12]

      (12) Li, Y.; Han, W. W.; Liao, M. X. Acta Phys. -Chim. Sin. 2009, 25, 2493. [李晔, 韩伟伟, 廖明霞. 物理化学学报, 2009, 25, 2493.]

    13. [13]

      (13) Ren, X. F.; Ren, A. M.; Wang, Q.; Feng, J. K. Acta Phys. -Chim. Sin. 2010, 26, 110. [任雪峰, 任爱民, 王钦, 封继康. 物理化学学报, 2010, 26, 110.]

    14. [14]

      (14) Ma, R. M.; Guo, P.; Yang, L. L.; Guo, L. S.; Zhang, X. X.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. A 2010, 114, 1973.  

    15. [15]

      (15) Cramariuc, O.; Hukka, T. I.; Rantala, T. T.; Lemmetyinen, H. J. Phys. Chem. A 2006, 110, 12470.  

    16. [16]

      (16) Dunbar, A. D. F.; Richardson, T. H.; McNaughton, A. J.; Hutchinson, J.; Hunter, C. A. J. Phys. Chem. B 2006, 110, 16646.  

    17. [17]

      (17) Dunbar, A. D. F.; Richardson, T. H.; Hutchinson, J.; Hunter, C. A. Sens. Actuators, B 2008, 128, 468.  

    18. [18]

      (18) Chen, M.; Schliep, M.; Willows, R. D.; Cai, Z. I.; Neilan, B. A.; Scheer, H. Science 2010, 329, 1318.  

    19. [19]

      (19) Sakakibara, K.; Ogawa, Y.; Nakatsubo, F. Macromol. Rapid Commun. 2007, 28, 1270.  

    20. [20]

      (20) Dunbar, A. D. F.; Brittle, S.; Richardson, T. H.; Hutchinson, J.; Hunter, C. A. J. Phys. Chem. B 2010, 114, 11697.  

    21. [21]

      (21) Wang, C. W.; Ren Y. J.; Cao, Z. F.; Chen, Q. B. Chem. Res. Chin. Univ. 2010, 26, 761.

    22. [22]

      (22) Sundholm, D. Phys. Chem. Chem. Phys. 2000, 2, 2275.

    23. [23]

      (23) Nguyen, K. A.; Day, P. N.; Pachter, R. J. Chem. Phys. 1999, 110, 9135.  

    24. [24]

      (24) uterman, M. J. Mol. Spectrosc. 1961, 6, 138.  

    25. [25]

      (25) uterman, M.; Wagniére, G. H. J. Mol. Spectrosc. 1963, 11, 108.  

    26. [26]

      (26) uterman, M. J. Chem. Phys. 1959, 30, 1139.  

    27. [27]

      (27) David, D.; Minh, T. N. Chem. Phys. Lett. 2003, 376, 329.  

    28. [28]

      (28) Van Gisbergen, S. J. A, Rosa, A.; Ricciardi, G.; Baerends, E. J. J. Chem. Phys. 1999, 11, 2499.

    29. [29]

      (29) Nguyen, K. A.; Day, P. N.; Pachter, R. J. Phys. Chem. A 2000, 104, 4748.  

    30. [30]

      (30) Adler, A. D.; Lon , F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443.  

    31. [31]

      (31) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

    32. [32]

      (32) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    33. [33]

      (33) Slater, J. C. Phys. Rev. 1951, 81, 385.  

    34. [34]

      (34) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    35. [35]

      (35) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    36. [36]

      (36) Sundholm, D. Chem. Phys. Lett. 2000, 317, 392.  

    37. [37]

      (37) Nguyen, K. A.; Pachter, R. J. Chem. Phys. 2001, 114, 10757.  

    38. [38]

      (38) Seminario, J. M. Recent Developments and Applications of Modern Density Functional Theory; Elsevier: New York, 1996.

    39. [39]

      (39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian Inc.: Wallingford, CT, 2004

    40. [40]

      (40) Li, X.Y.; Czernuszewicz, R. S.; Kincaid, J. R.; Su, Y. O.; Spiro, T. G. J. Phys. Chem. 1990, 94, 31.  

    41. [41]

      (41) Susi, H.; Ard, J. S. Spectrochim. Acta. A 1977, 33, 561.  

    42. [42]

      (42) Scheidt, W. R.; Molfort, J. U.; Eigenbrot, C. W.; Adler, A.; Radonovich, L. J.; Hoard, J. L. Inorg.Chem. 1986, 25, 795.  

    43. [43]

      (43) Prendergast, K.; Spiro, T. G. J. Am. Chem. Soc. 1992, 114, 3793.  

    44. [44]

      (44) Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH: New York, 2001.  

    45. [45]

      (45) Ernzerhof, M.; Perdew, J. P.; Burke, K. Density Functional Theory; Nalewajski, R. Ed. Spinger-Verlag: Berlin, 1996

    46. [46]

      (46) Ohkubo, K.; Imahori, H.; Shao, J.; Ou, Z.; Kadish, K. M.; Chen, Y.; Zheng, G.; Pandey, R. K.; Fujitsuka, M.; Ito, O.; Fukuzumi, S. J. Phys. Chem. A 2002, 106, 10991.  

    47. [47]

      (47) Fukuzumi, S.; Ohkubo, K.; E, W. B.; Ou, Z. P.; Shao, J.; Kadish, K. M.; Hutchison, J. A.; Ghiggino, K. P.; Sintic, P. J.; Crossley, M. J. J. Am. Chem. Soc. 2003, 125, 14986.  

    48. [48]

      (48) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am. Chem. Soc. 2000, 122, 6535.  

    49. [49]

      (49) Cramariuc, O.; Hukka, T. I.; Rantala, T. T. J. Phys. Chem. A 2004, 108, 9435.  

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    19. [19]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    20. [20]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

Metrics
  • PDF Downloads(932)
  • Abstract views(2567)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return