Citation: FAN Xiao-Li, LIU Yan, LIU Chong, LAU Woon-Ming. Reaction Pathways of Acetylene Adsorption on the Ge(001) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1107-1112. doi: 10.3866/PKU.WHXB201203011 shu

Reaction Pathways of Acetylene Adsorption on the Ge(001) Surface

  • Received Date: 12 December 2011
    Available Online: 1 March 2012

    Fund Project: 国家自然科学基金(20903075) (20903075)高等学校学科创新引智计划(111) (B08040)资助项目 (111) (B08040)

  • The adsorption reaction of acetylene on the Ge(001) surface is investigated by first-principles calculations. In order to understand the relative populations of the di-σ and paired-end-bridge structures, we calculated the adsorption reaction paths leading to their formation at 0.5 and 1.0 ML coverage. More importantly, we studied the adsorption channel involving sublayer Ge atoms by forming a metastable subdi- σ structure. This sub-di-σ structure represents second reaction pathway that results in the end-bridge structure, which plays an important role in the formation of the adsorption configurations. In contrast to C2H2, the adsorption of C2H4 on the Ge(001) surface involving subsurface Ge atoms, is endothermic. Our calculations show from both kinetic and thermodynamic standpoints that the paired-end-bridge structure is the primary adsorption configuration that explains the experimental observations. Our work also helps to understand the fundamental differences between the adsorption of C2H2 and C2H4 on the Ge(001) surface.
  • 加载中
    1. [1]

      (1) Wolkow, R. A. Annu. Rev. Phys. Chem. 1999, 50, 413.  

    2. [2]

      (2) Ma, F.; Xu, M. C.; Yang, B.; Shi, D. X.; Guo, H. M.; Pang, S. J.; Gao, H. J. Chin. Phys. 2007, 16, 2661.  

    3. [3]

      (3) Dou, R. F.; Jia, J. F.; Xu, M. J.; Pan, M. H.; He, K.; Zhang, L. J.; Xue, Q. K. Acta Phys. Sin. 2004, 53, 871. [窦瑞芬, 贾金锋, 徐茂杰, 潘明虎, 何珂, 张丽娟, 薛其坤. 物理学报, 2004, 53, 871.]

    4. [4]

      (4) Wei, S. Y.;Wang, J. G.; Ma, L. Chin. Phys. 2004, 13, 8.

    5. [5]

      (5) Kim, A.; Choi, D. S.; Lee, J. Y.; Kim, S. J. Phys. Chem. B 2004, 108, 3256.  

    6. [6]

      (6) Hwang, Y. J.; Hwang, E.; Kim, D. H.; Kim, A.; Hong, S.; Kim, S. J. Phys. Chem. C 2009, 113, 1426.  

    7. [7]

      (7) Cho, J. H.; Kim, K. S.; Morikawa, E. J. Chem. Phys. 2006, 124, 024716.  

    8. [8]

      (8) Fan, X. L.; Sun, C. C.; Zhang, Y. F.; Lau,W. M. J. Phys. Chem. C 2010, 114, 2200.  

    9. [9]

      (9) Kim, A.; Maeng, J. Y.; Lee, J. Y.; Kim, S. J. Phys. Chem. C 2002, 117, 10215.

    10. [10]

      (10) Fan, X. L.; Min, J. X.; Sun, C. C.; Chi, Q.; Cheng, Q. Z. Acta Chim. Sin. 2010, 68, 1589.

    11. [11]

      (11) Cho, J.; Kleinman, L. J. Chem. Phys. 2003, 119, 2820.  

    12. [12]

      (12) Yoshimoto, Y.; Nakamura, Y.; Kawai, H.; Tsukada, M.; Nakayama, M. Phys. Rev. B 2000, 61, 1965.  

    13. [13]

      (13) Harold, J.W. Z. Phys. Rep. 2003, 388, 1.  

    14. [14]

      (14) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, R558.  

    15. [15]

      (15) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.  

    16. [16]

      (16) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.  

    17. [17]

      (17) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.  

    18. [18]

      (18) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  

    19. [19]

      (19) Cohen, M. L. Phys. Rep. 1984, 110, 293.  

    20. [20]

      (20) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.  

    21. [21]

      (21) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

    22. [22]

      (22) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978.

    23. [23]

      (23) Jónsson, H. Annu. Rev. Phys. Chem. 2000, 51, 623.  

    24. [24]

      (24) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.  

    25. [25]

      (25) Fan, X. L.; Zhang, Y. F.; Lau,W. M.; Liu, Z. F. Phys. Rev. B 2005, 72, 165305.  

    26. [26]

      (26) Ryan, P. M.; Teague, L. C.; Boland, J. J. J. Am. Chem. Soc. 2009, 131, 6768.  

    27. [27]

      (27) Zhang, Q. J.; Fan, X. L.; Lau,W. M.; Liu, Z. F. Phys. Rev. B 2009, 79, 195303.  

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    20. [20]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

Metrics
  • PDF Downloads(721)
  • Abstract views(3703)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return