Citation: LIU Tian-Qing, SUN Wei, SUN Xiang-Yu, AI Hong-Ru. Mechanism and Condition Analysis of Condensed Drop Jumping on Super-Hydrophobic Surfaces[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1206-1212. doi: 10.3866/PKU.WHXB201202293 shu

Mechanism and Condition Analysis of Condensed Drop Jumping on Super-Hydrophobic Surfaces

  • Received Date: 28 November 2011
    Available Online: 29 February 2012

    Fund Project: 国家自然科学基金(50876015)资助项目 (50876015)

  • The initial shape of a coalesced drop is determined by the conservation of drop volume and the surface free energy before and after two or more condensed drops merge. The coalesced drop is in a metastable state with a driving force to reduce its base radius toward equilibrium state. This driving force and resistance on the three-phase contact line (TPCL) are analyzed during drop transformation. A dynamic equation describing the shape conversion of the drop is proposed and solved. The jumping height of a merged drop is determined by the speed at which the center of gravity moves up when the base radius of the drop reduces to 0 mm on a super-hydrophobic surface. Calculations show that a coalesced drop on a flat surface can transform its shape only in a limited fashion. It will not jump since its transformation stops before it reaches equilibrium. A wetted drop on a rough surface is even more difficult to transform and jump because of the greater TPCL resistance. However, on a two-tier surface, a partially wetted drop impaling only the micro-scale roughness exhibits a shape transition to a Cassie state upon coalescence, but without obvious jumping. Only after the coalescence of two or more small Cassie-state drops on a textured surface, can the merged composite drop easily transform to a 0 mm base radius and jump. It can be concluded that key factors verning condensed-drop jumping are the merged composite drop in a metastable state and a small TPCL resistance on nano or micro-nano two-tier surfaces.
  • 加载中
    1. [1]

      (1) Liu, T. Q.; Sun, W.; Sun, X. Y.; Ai, H. R. Langmuir 2010, 26, 14835.  

    2. [2]

      (2) Liu, T. Q.; Sun, W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2010, 26, 2989. [刘天庆, 孙玮, 孙相彧, 艾宏儒. 物理化学学报, 2010, 26, 2989.]

    3. [3]

      (3) Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; McKinley, G. H.; Gleason. K. K. Nano Lett. 2003, 3, 1701.  

    4. [4]

      (4) Chen, C. H.; Cai, Q. J.; Tsai, C. L.; Chen, C. L.; Xiong, G. Y.; Yu, Y.; Ren, Z. F. Appl. Phys. Lett. 2007, 90, 173108.  

    5. [5]

      (5) Dorrer, C.; Ruhe, J. Adv. Mater. 2008, 20, 159.  

    6. [6]

      (6) Boreyko, J. B.; Chen, C. H. Phys. Rev. Lett. 2009, 103, 184501.  

    7. [7]

      (7) Boreyko, J. B.; Chen, C. H. Phys. Fluids 2010, 22, 091110.  

    8. [8]

      (8) Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Adv. Funct. Mater. 2011, 21, 4617.  

    9. [9]

      (9) Dorrer, C.; Ruhe, J. Langmuir 2007, 23, 3820.  

    10. [10]

      (10) Narhe,R. D.; Beysens,D.A. Europhys. Lett. 2006, 75, 98.  

    11. [11]

      (11) Narhe, R. D.; Beysens, D. A. Langmuir 2007, 23, 6486.  

    12. [12]

      (12) Narhe, R. D.; Beysens, D. A. Phys. Rev. Lett. 2004, 93, 076103.  

    13. [13]

      (13) Wier, K. A.; McCarthy, T. J. Langmuir 2006, 22, 2433.  

    14. [14]

      (14) Jung, Y. C.; Bhushan, B. Journal of Microscopy 2008, 229, 127.  

    15. [15]

      (15) Lafuma, A.; Quere, D.; Nat. Mater. 2003, 2, 457.  

    16. [16]

      (16) Narhe, R. D.; nzalez-Vinas, W.; Beysens, D. A. Appl. Surf. Sci. 2010, 256, 4930.  

    17. [17]

      (17) Chen, X. L.; Lu, T. Science in China Series G (Physics, Mechanics and Astronomy) 2009, 52, 233.  

    18. [18]

      (18) Chen, X. L.; Lue, T.; Chein, X. Chemical Journal of Chinese Universities Chinese 2008, 29, 969. [陈晓玲, 吕田, 陈翔. 高等学校化学学报, 2008, 29, 969.]

    19. [19]

      (19) Song, Y. J.; Ren, X. G.; Ren, S. M.; Wang, H. Journal of Engineering Thermophysics 2007, 28, 95. [宋永吉, 任晓光, 任绍梅, 王虹. 工程热物理学报, 2007, 28, 95.]

    20. [20]

      (20) Wang, S. F; Lan, Z.; Wang, A. L.; Ma, X. H. Journal of Chemical Industry and Engineering 2010, 61, 607. [王四芳, 兰忠, 王爱丽, 马学虎. 化工学报, 2010, 61, 607.]

    21. [21]

      (21) Ma, X. H.; Wang, M. Z.; Lan, Z.; Wang, S. F.; Li, X. N. Journal of Engineering Thermophysics 2009, 30, 1752. [马学虎, 汪明哲, 兰忠, 王四芳, 李晓楠. 工程热物理学报, 2009, 30, 1752.]

    22. [22]

      (22) Boreyko, J. B.; Baker, C. H.; Poley, C. R.; Chen, C. H. Langmuir 2011, 27, 7502.  

    23. [23]

      (23) Glicksman, L. R.; Hunt, A. W. Int. J. Heat Mass Transfer 1972, 15, 2251.  

    24. [24]

      (24) Graham, C.; Griffith P.; In t. J. Heat Mass Transfer 1973, 16, 337.  

  • 加载中
    1. [1]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    2. [2]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    3. [3]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    4. [4]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    5. [5]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

Metrics
  • PDF Downloads(1164)
  • Abstract views(4565)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return