Citation: LIU Tian-Qing, SUN Wei, SUN Xiang-Yu, AI Hong-Ru. Mechanism and Condition Analysis of Condensed Drop Jumping on Super-Hydrophobic Surfaces[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1206-1212. doi: 10.3866/PKU.WHXB201202293
-
The initial shape of a coalesced drop is determined by the conservation of drop volume and the surface free energy before and after two or more condensed drops merge. The coalesced drop is in a metastable state with a driving force to reduce its base radius toward equilibrium state. This driving force and resistance on the three-phase contact line (TPCL) are analyzed during drop transformation. A dynamic equation describing the shape conversion of the drop is proposed and solved. The jumping height of a merged drop is determined by the speed at which the center of gravity moves up when the base radius of the drop reduces to 0 mm on a super-hydrophobic surface. Calculations show that a coalesced drop on a flat surface can transform its shape only in a limited fashion. It will not jump since its transformation stops before it reaches equilibrium. A wetted drop on a rough surface is even more difficult to transform and jump because of the greater TPCL resistance. However, on a two-tier surface, a partially wetted drop impaling only the micro-scale roughness exhibits a shape transition to a Cassie state upon coalescence, but without obvious jumping. Only after the coalescence of two or more small Cassie-state drops on a textured surface, can the merged composite drop easily transform to a 0 mm base radius and jump. It can be concluded that key factors verning condensed-drop jumping are the merged composite drop in a metastable state and a small TPCL resistance on nano or micro-nano two-tier surfaces.
-
-
[1]
(1) Liu, T. Q.; Sun, W.; Sun, X. Y.; Ai, H. R. Langmuir 2010, 26, 14835.
-
[2]
(2) Liu, T. Q.; Sun, W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2010, 26, 2989. [刘天庆, 孙玮, 孙相彧, 艾宏儒. 物理化学学报, 2010, 26, 2989.]
-
[3]
(3) Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; McKinley, G. H.; Gleason. K. K. Nano Lett. 2003, 3, 1701.
-
[4]
(4) Chen, C. H.; Cai, Q. J.; Tsai, C. L.; Chen, C. L.; Xiong, G. Y.; Yu, Y.; Ren, Z. F. Appl. Phys. Lett. 2007, 90, 173108.
- [5]
-
[6]
(6) Boreyko, J. B.; Chen, C. H. Phys. Rev. Lett. 2009, 103, 184501.
-
[7]
(7) Boreyko, J. B.; Chen, C. H. Phys. Fluids 2010, 22, 091110.
-
[8]
(8) Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Adv. Funct. Mater. 2011, 21, 4617.
- [9]
-
[10]
(10) Narhe,R. D.; Beysens,D.A. Europhys. Lett. 2006, 75, 98.
- [11]
-
[12]
(12) Narhe, R. D.; Beysens, D. A. Phys. Rev. Lett. 2004, 93, 076103.
- [13]
-
[14]
(14) Jung, Y. C.; Bhushan, B. Journal of Microscopy 2008, 229, 127.
- [15]
-
[16]
(16) Narhe, R. D.; nzalez-Vinas, W.; Beysens, D. A. Appl. Surf. Sci. 2010, 256, 4930.
-
[17]
(17) Chen, X. L.; Lu, T. Science in China Series G (Physics, Mechanics and Astronomy) 2009, 52, 233.
-
[18]
(18) Chen, X. L.; Lue, T.; Chein, X. Chemical Journal of Chinese Universities Chinese 2008, 29, 969. [陈晓玲, 吕田, 陈翔. 高等学校化学学报, 2008, 29, 969.]
-
[19]
(19) Song, Y. J.; Ren, X. G.; Ren, S. M.; Wang, H. Journal of Engineering Thermophysics 2007, 28, 95. [宋永吉, 任晓光, 任绍梅, 王虹. 工程热物理学报, 2007, 28, 95.]
-
[20]
(20) Wang, S. F; Lan, Z.; Wang, A. L.; Ma, X. H. Journal of Chemical Industry and Engineering 2010, 61, 607. [王四芳, 兰忠, 王爱丽, 马学虎. 化工学报, 2010, 61, 607.]
-
[21]
(21) Ma, X. H.; Wang, M. Z.; Lan, Z.; Wang, S. F.; Li, X. N. Journal of Engineering Thermophysics 2009, 30, 1752. [马学虎, 汪明哲, 兰忠, 王四芳, 李晓楠. 工程热物理学报, 2009, 30, 1752.]
-
[22]
(22) Boreyko, J. B.; Baker, C. H.; Poley, C. R.; Chen, C. H. Langmuir 2011, 27, 7502.
-
[23]
(23) Glicksman, L. R.; Hunt, A. W. Int. J. Heat Mass Transfer 1972, 15, 2251.
-
[24]
(24) Graham, C.; Griffith P.; In t. J. Heat Mass Transfer 1973, 16, 337.
-
[1]
-
-
[1]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[2]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[3]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[4]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[5]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[6]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[11]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[12]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[13]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[14]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[15]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[16]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[17]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[18]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[1]
Metrics
- PDF Downloads(1164)
- Abstract views(4566)
- HTML views(34)