Citation: DU Ai, ZHOU Bin, GUI Jia-Yin, LIU Guang-Wu, LI Yu-Nong, WU Guang-Ming, SHEN Jun, ZHANG Zhi-Hua. Thermal and Mechanical Properties of Density-Gradient Aerogels for Outer-Space Hypervelocity Particle Capture[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1189-1196. doi: 10.3866/PKU.WHXB201202292
-
Aerogels with densities in the range 40-175 mg·cm-3 were prepared using a tetraethyl orthosilicate (TEOS) ethanol-water solution as the precursor and hydrofluoric acid as the catalyst via a sol-gel process and CO2 supercritical-fluid drying. The density-gradient aerogels were prepared using layer-by-layer gelation, sol co-gelation, and gradient-sol co-gelation methods and their gradient properties were studied systematically. The results show that aerogels with different densities all have a threedimensional skeleton consisting of spherical particles of diameter about 40-90 nm. The lower the density is, the looser the skeleton and pore-size distributions are, and the larger the peak value of the pore size is. Gradient aerogels prepared via different methods exhibited graded, approximately gradient, or gradient distributions. Dynamic mechanical analysis indicates that the Young's moduli of the aerogels at -100 and 25 °C (changed from 4.6×105 to 1.9×105 Pa and from 5.0×105 to 2.1×105 Pa, respectively) tend to decrease with decreasing density. Thermal constants analysis shows that as the densities of the aerogels decrease, the thermal diffusion coefficients increase and the specific heat capacities decrease, but the thermal conductivities do not change monotonically.
-
Keywords:
-
Gradient
, - Aerogel,
- Thermal,
- Mechanics,
- Thermal conductivity,
- Modulus,
- Low temperature
-
-
-
[1]
(1) Fricke, J.; Emmerling, A. J. Am. Ceram. Soc. 1992, 75, 2027.
-
[2]
(2) Du, A.; Zhou, B.; Shen, J.; Gui, J. Y.; Liu, C. Z.; Fan, G. L.; Zhang, Z. H. Atom. Energy Sci. Technol. 2010, 44, 1006. [杜艾, 周斌, 沈军, 归佳寅, 刘春泽, 范广乐, 张志华. 原子能科学技术, 2010, 44, 1006.]
- [3]
-
[4]
(4) Hüsing, N.; Schubert, U. Angew. Chem. Int. Edit. 1998, 37, 22.
-
[5]
(5) Xu, Z. J.; Gan, L. H.; Pang, Y. C.; Chen, L.W. Acta Phys. -Chim. Sin. 2005, 21, 221. [徐子颉, 甘礼华, 庞颖聪, 陈龙武. 物理化学学报, 2005, 21, 221.]
-
[6]
(6) Guo, X. Z.; Yan, L. Q.; Yang, H.; Li, J.; Li, C. Y.; Cai, X. B. Acta Phys. -Chim. Sin. 2011, 27, 2478. [郭兴忠, 颜立清, 杨辉, 李建, 李超宇, 蔡晓波. 物理化学学报, 2011, 27, 2478.]
-
[7]
(7) Du, A.; Zhou, B.; Zhong, Y. H.; Zhu, X. R.; Gao, G. H.;Wu, G. M.; Zhang, Z. H.; Shen, J. J. Sol-Gel Sci. Technol. 2011, 58, 225.
-
[8]
(8) Du, A.; Zhou, B.; Shen, J.; Xiao, S. F.; Zhang, Z. H.; Liu, C. Z.; Zhang, M. X. J. Non-Cryst. Solids 2009, 355, 175.
-
[9]
(9) Ren, H. B.; Zhang, L.; Shang, C.W.;Wang, X.; Bi, Y. T. J. Sol-Gel Sci. Technol. 2010, 53, 307.
-
[10]
(10) Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, 1st ed.; Springer: New York, 2011; pp 3-18.
-
[11]
(11) Wagh, P. B.; Begag, R.; Pajonk, G. M.; Rao, A. V.; Haranath, D. Mater. Chem. Phys. 1999, 57, 214.
- [12]
-
[13]
(13) Gerlach, R.; Kraus, O.; Fricke, J.; Eccardt, P. C.; Kroemer, N.; Ma ri, V. J. Non-Cryst. Solids 1992, 145, 227.
-
[14]
(14) Tsou, P. J. Non-Cryst. Solids 1995, 186, 415.
-
[15]
(15) Tsou, P.; Brownlee, D. E.; Sandford, S. A.; Hörz, F.; Zolensky, M. E. J. Geophys. Res. 2003, 108, SRD3-1.
-
[16]
(16) Bajt, S.; Sandford, S. A.; Flynn, G. J.; Matrajt, G.; Snead, C. J.; Westphal, A. J.; Bradley, J. P. Meteorit. Planet. Sci. 2009, 44, 471.
-
[17]
(17) Marty, B.; Palma, R. L.; Pepin, R. O.; Zimmermann, L.; Schlutter, D. J.; Burnard, P. G.;Westphal, A. J.; Snead, C. J.; Bajt, S.; Becker, R. H.; Simones, J. E. Science 2008, 319, 75.
- [18]
-
[19]
(19) Gui, J. Y.; Zhou, B.; Zhong, Y. H.; Du, A.; Shen, J. J. Sol-Gel Sci. Technol. 2011, 58, 470.
-
[20]
(20) Du, A.; Zhou, B.; Zhong, Y. H.; Li, Y. N.; Gui, J. Y.; Shen, Y.; Shen, J.;Wu, G. M. Acta Aeronaut. Astronaut. Sin. 2011, 32, 961. [杜艾, 周斌, 钟艳红, 李宇农, 归佳寅, 沈洋, 沈军, 吴广明. 航空学报, 2011, 32, 961.]
-
[21]
(21) Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties, 2nd ed.; Tsinghua University Press: Beijing, 2002; pp 376-395; translated by Liu, P. S. [Gibson, L. J., Ashby, M. F. 多孔固体: 结构与性能. 刘培生, 译. 北京: 清华大学出版社, 2002: 376-395.]
-
[1]
-
-
[1]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[2]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[3]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[4]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[5]
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
-
[6]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[7]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[8]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[9]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[10]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[11]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[12]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[13]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[14]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[15]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[16]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[17]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[18]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[19]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[20]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[1]
Metrics
- PDF Downloads(779)
- Abstract views(3034)
- HTML views(13)