Citation: DU Ai, ZHOU Bin, GUI Jia-Yin, LIU Guang-Wu, LI Yu-Nong, WU Guang-Ming, SHEN Jun, ZHANG Zhi-Hua. Thermal and Mechanical Properties of Density-Gradient Aerogels for Outer-Space Hypervelocity Particle Capture[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1189-1196. doi: 10.3866/PKU.WHXB201202292 shu

Thermal and Mechanical Properties of Density-Gradient Aerogels for Outer-Space Hypervelocity Particle Capture

  • Received Date: 21 November 2011
    Available Online: 29 February 2012

    Fund Project: 国家自然科学基金(51102184, 51172163) (51102184, 51172163) 国家高技术研究发展(863)计划, 国家科技支撑计划(2009BAC62B02) (863)计划, 国家科技支撑计划(2009BAC62B02)同济大学青年优秀人才培养行动计划(2010KJ068) (2010KJ068)教育部博士点基金(20090072110047, 20100072110054)资助项目 (20090072110047, 20100072110054)

  • Aerogels with densities in the range 40-175 mg·cm-3 were prepared using a tetraethyl orthosilicate (TEOS) ethanol-water solution as the precursor and hydrofluoric acid as the catalyst via a sol-gel process and CO2 supercritical-fluid drying. The density-gradient aerogels were prepared using layer-by-layer gelation, sol co-gelation, and gradient-sol co-gelation methods and their gradient properties were studied systematically. The results show that aerogels with different densities all have a threedimensional skeleton consisting of spherical particles of diameter about 40-90 nm. The lower the density is, the looser the skeleton and pore-size distributions are, and the larger the peak value of the pore size is. Gradient aerogels prepared via different methods exhibited graded, approximately gradient, or gradient distributions. Dynamic mechanical analysis indicates that the Young's moduli of the aerogels at -100 and 25 °C (changed from 4.6×105 to 1.9×105 Pa and from 5.0×105 to 2.1×105 Pa, respectively) tend to decrease with decreasing density. Thermal constants analysis shows that as the densities of the aerogels decrease, the thermal diffusion coefficients increase and the specific heat capacities decrease, but the thermal conductivities do not change monotonically.
  • 加载中
    1. [1]

      (1) Fricke, J.; Emmerling, A. J. Am. Ceram. Soc. 1992, 75, 2027.  

    2. [2]

      (2) Du, A.; Zhou, B.; Shen, J.; Gui, J. Y.; Liu, C. Z.; Fan, G. L.; Zhang, Z. H. Atom. Energy Sci. Technol. 2010, 44, 1006. [杜艾, 周斌, 沈军, 归佳寅, 刘春泽, 范广乐, 张志华. 原子能科学技术, 2010, 44, 1006.]

    3. [3]

      (3) Fricke, J.; Emmerling, A. Struct. Bonding 1992, 77, 37.  

    4. [4]

      (4) Hüsing, N.; Schubert, U. Angew. Chem. Int. Edit. 1998, 37, 22.  

    5. [5]

      (5) Xu, Z. J.; Gan, L. H.; Pang, Y. C.; Chen, L.W. Acta Phys. -Chim. Sin. 2005, 21, 221. [徐子颉, 甘礼华, 庞颖聪, 陈龙武. 物理化学学报, 2005, 21, 221.]

    6. [6]

      (6) Guo, X. Z.; Yan, L. Q.; Yang, H.; Li, J.; Li, C. Y.; Cai, X. B. Acta Phys. -Chim. Sin. 2011, 27, 2478. [郭兴忠, 颜立清, 杨辉, 李建, 李超宇, 蔡晓波. 物理化学学报, 2011, 27, 2478.]

    7. [7]

      (7) Du, A.; Zhou, B.; Zhong, Y. H.; Zhu, X. R.; Gao, G. H.;Wu, G. M.; Zhang, Z. H.; Shen, J. J. Sol-Gel Sci. Technol. 2011, 58, 225.  

    8. [8]

      (8) Du, A.; Zhou, B.; Shen, J.; Xiao, S. F.; Zhang, Z. H.; Liu, C. Z.; Zhang, M. X. J. Non-Cryst. Solids 2009, 355, 175.  

    9. [9]

      (9) Ren, H. B.; Zhang, L.; Shang, C.W.;Wang, X.; Bi, Y. T. J. Sol-Gel Sci. Technol. 2010, 53, 307.  

    10. [10]

      (10) Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, 1st ed.; Springer: New York, 2011; pp 3-18.

    11. [11]

      (11) Wagh, P. B.; Begag, R.; Pajonk, G. M.; Rao, A. V.; Haranath, D. Mater. Chem. Phys. 1999, 57, 214.  

    12. [12]

      (12) Jones, S. M. J. Sol-Gel Sci. Technol. 2006, 40, 351.  

    13. [13]

      (13) Gerlach, R.; Kraus, O.; Fricke, J.; Eccardt, P. C.; Kroemer, N.; Ma ri, V. J. Non-Cryst. Solids 1992, 145, 227.  

    14. [14]

      (14) Tsou, P. J. Non-Cryst. Solids 1995, 186, 415.  

    15. [15]

      (15) Tsou, P.; Brownlee, D. E.; Sandford, S. A.; Hörz, F.; Zolensky, M. E. J. Geophys. Res. 2003, 108, SRD3-1.

    16. [16]

      (16) Bajt, S.; Sandford, S. A.; Flynn, G. J.; Matrajt, G.; Snead, C. J.; Westphal, A. J.; Bradley, J. P. Meteorit. Planet. Sci. 2009, 44, 471.  

    17. [17]

      (17) Marty, B.; Palma, R. L.; Pepin, R. O.; Zimmermann, L.; Schlutter, D. J.; Burnard, P. G.;Westphal, A. J.; Snead, C. J.; Bajt, S.; Becker, R. H.; Simones, J. E. Science 2008, 319, 75.  

    18. [18]

      (18) Special issue: Stardust; Science 2006, 314, 1641-1824.  

    19. [19]

      (19) Gui, J. Y.; Zhou, B.; Zhong, Y. H.; Du, A.; Shen, J. J. Sol-Gel Sci. Technol. 2011, 58, 470.  

    20. [20]

      (20) Du, A.; Zhou, B.; Zhong, Y. H.; Li, Y. N.; Gui, J. Y.; Shen, Y.; Shen, J.;Wu, G. M. Acta Aeronaut. Astronaut. Sin. 2011, 32, 961. [杜艾, 周斌, 钟艳红, 李宇农, 归佳寅, 沈洋, 沈军, 吴广明. 航空学报, 2011, 32, 961.]

    21. [21]

      (21) Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties, 2nd ed.; Tsinghua University Press: Beijing, 2002; pp 376-395; translated by Liu, P. S. [Gibson, L. J., Ashby, M. F. 多孔固体: 结构与性能. 刘培生, 译. 北京: 清华大学出版社, 2002: 376-395.]

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    6. [6]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    15. [15]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(779)
  • Abstract views(3035)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return