Citation: ZHU Fu-Liang, CHEN Yuan-Feng, CHENG Yong-Liang, ZHU Yu-Qing, YAN Xing-Bin. Fabrication and Magnetic Properties of Electrospun Zinc Ferrite Hollow Fibers[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1265-1268. doi: 10.3866/PKU.WHXB201202291 shu

Fabrication and Magnetic Properties of Electrospun Zinc Ferrite Hollow Fibers

  • Received Date: 10 November 2011
    Available Online: 29 February 2012

    Fund Project: 甘肃省自然科学基金(3ZS042-B25-029) (3ZS042-B25-029)国家自然科学基金(51005225)资助项目 (51005225)

  • Zinc ferrite (ZnFe2O4) hollow fibers have been fabricated by annealing electrospun polyvinylpyrrolidone (PVP)/nitrate salt composite nanofibers at 500 °C for 3 h with a heating rate of 5 °C· min-1. The composite fibers were initially prepared by electrospinning Zn, Fe salts, and PVP from solution. The structure, morphology, and magnetic properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The XRD results indicate a spinel phase structure, while SEM and TEM reveal hollow fibers (200-400 nm in diameter) with walls consisting of packed 25 nm nanoparticles. Room temperature VSM of the ZnFe2O4 hollow fibers reveal a superparamagnetic behavior and a magnetization value of 2.03 emu·g-1 at 10 kOe.
  • 加载中
    1. [1]

      (1) Liu, Z.; Sun, X. M.; Nozomi, N. R.; Dai, H. J. ACS Nano 2007, 1, 50.  

    2. [2]

      (2) Gabelman, A.; Hwang, S. T. J. Membrane Sci. 1999, 159, 61.  

    3. [3]

      (3) Li, X. Y.; Hou, Y.; Zhao, Q. D.; Teng,W.; Hu, X. J.; Chen, G. H. Chemosphere 2011, 82, 581.  

    4. [4]

      (4) Leo, A.; Smart, S.; Liu, S. M.; Costa, J. D. J. Membrane Sci. 2011, 368, 64.  

    5. [5]

      (5) Wolfe, S. P.; Hsu, E.; Reid, L. M.; MacDonald, J. M. Biotechnol. Bioeng. 2002, 77, 83.  

    6. [6]

      (6) Droushiotis, N.; Doraswami, U.; Kanawka, K.; Kelsall, G. H.; Li, K. Solid State Ionics 2009, 180, 1091.  

    7. [7]

      (7) Say, R.; Serap, S.; Denizli, A. J. Appl. Polym. Sci. 2002, 83, 3089.  

    8. [8]

      (8) Qiu, P. H.; Mao, C. B. ACS Nano 2010, 4, 1573.  

    9. [9]

      (9) Meng, Q.;Wu, D. Q.; Zhang, G. L.; Qiu, H. X. Biotechnol. Lett. 2006, 28, 279.  

    10. [10]

      (10) Song, P.;Wang, Q.; Zhang, Z.; Yang, Z. X. Sensor Actuat. B-Chem. 2010, 147, 248.  

    11. [11]

      (11) Ge, Q. Q.;Wang, Z. B.; Yan, Y. S. J. Am. Chem. Soc. 2009, 131, 17056.  

    12. [12]

      (12) Fan, H. M.; Yi, J. B.; Yang, Y.; Kho, K.W.; Tan, H. R.; Shen, Z. X.; Ding, J.; Sun, X.W.; Olivo, M. C.; Feng, Y. P. ACS Nano 2009, 3, 2798.  

    13. [13]

      (13) Zeng, Y.; Liu, J. T.;Wu,W.; Ding, C. X. Surf. Coat. Tech. 2005, 200, 2398.  

    14. [14]

      (14) Yeary, L.W.; Moon, J.W.; Rawn, C. J.; Love, L. J.; Rondinone, A. J.; Thompson, J. R. J. Magn. Magn. Mater. 2011, 323, 3043.  

    15. [15]

      (15) Niu, X. S.; Du,W. P.; Du,W. M. Sensor Actuat B-Chem. 2004, 99, 405.  

    16. [16]

      (16) Deng, Y. F.; Zhang, Q. M.; Tang, S. D.; Zhang, L. T.; Deng, S. N.; Shi, Z. C. Chem. Commun. 2011, 47, 6828.  

    17. [17]

      (17) Atif, M.; Hasanain, S. K.; Nadeem, M. Solid State Commun. 2006, 38, 416.

    18. [18]

      (18) Yuan, Z. H.; Zhang, L. D. J. Mater. Chem. 2001, 11, 1265.  

    19. [19]

      (19) Ehrhardt, H.; Campbell, S. J.; Hofmann, M. J. Alloy. Compd. 2002, 339, 255.  

    20. [20]

      (20) Naseri, M. G.; Saion, E. B.; Hashim, M.; Shaari, A. H.; Ahangar, H. A. Solid State Commun. 2011, 151, 1031.  

    21. [21]

      (21) Renaker, D. H.; Chun, I. Nanotechnology 1996, 7, 216.  

    22. [22]

      (22) Chang, G. Q.; Zheng, X.; Chen, R. Y.; Chen, X.; Chen, L. Q.; Chen, Z. Acta Phys. -Chim. Sin. 2008, 24, 1790. [常国庆, 郑曦, 陈日耀, 陈晓, 陈力勤, 陈震. 物理化学学报, 2008, 24, 1790.]  

    23. [23]

      (23) Ponhan,W.; Swatsitang, E.; Maensiri, S. Mater. Sci. Technol. 2010, 26, 1298.  

    24. [24]

      (24) Zhan, S. H.; ng, C. R.; Chen, D. R.; Jiao, X. L. J. Disper. Sci. Technol. 2006, 27, 931.  

    25. [25]

      (25) Cheng, Y. L.; Zou, B. L.; Yang, J. L.;Wang, C. J.; Liu, Y. J.; Cao, X. Q. Cryst. Eng. Commun. 2010, 13, 2268.

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(776)
  • Abstract views(2263)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return