Citation: GAO Yu-Fei, MENG Qing-Yuan, ZHANG Lu, LIU Jia-Qiu, JING Yu-Hang. Molecular Dynamics Simulation of Thermal Transport Properties for Boron Nitride Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1077-1084. doi: 10.3866/PKU.WHXB201202273 shu

Molecular Dynamics Simulation of Thermal Transport Properties for Boron Nitride Nanotubes

  • Received Date: 30 November 2011
    Available Online: 27 February 2012

    Fund Project: 国家自然科学基金(10772062)资助项目 (10772062)

  • The Boltzmann-Peierls phonon transport equation (BTE) and non-equilibrium molecular dynamics simulation (NEMD) are used to investigate the thermal transport properties of boron nitride nanotubes (BNNTs). First, the thermal-mechanical coupling is explored using NEMD. Then, by combining BTE and NEMD, the influence of temperature and length is investigated. Quantum correction is used to extend the range over which NEMD can be used. The results demonstrate that under low-strain conditions, the thermal conductivity decreases with increasing tensile or compressive strain. Then the phonon density of state (PDOS) is used to analyze the trends in thermal transport properties theoretically; it is found that the variations in thermal transport properties under tension are caused by changes in the phonon modes, and that under compression changes are induced by the flection of the BNNT structure. The BNNT thermal conductivity increases linearly with increasing temperature because of the quantum effect at low temperatures, and it decreases significantly as the temperature reaches a certain value. When the BNNT length is less than 120 nm, the BNNT's ballistic characteristics weaken with increasing length, but it also performs ballistic characteristic mainly, and thermal conductivity (κ) and length (L) obey the relationship κLα.
  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49(7), 5081.  

    3. [3]

      (3) Loiseau, A.;Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76(25), 4737.  

    4. [4]

      (4) Wirtz, L.; Rubio, A. Phys. Rev. B 2003, 68, 045425.  

    5. [5]

      (5) Zhang, G.; Li, B.W. The Journal of Physical Chemistry B 2005, 109(50), 23823.

    6. [6]

      (6) Liew, K. M.; Yuan, J. H. Nanotechnology 2011, 22, 085701.  

    7. [7]

      (7) Xiao, Y.; Yan, H.; Cao, J. X.; Ding, J.W.; Mao, Y. L.; Xiang, J. Phys. Rev. B: Condens. Matter. Phys 2004, 69, 205415.  

    8. [8]

      (8) Chang, C.W.; Fennimore, A. M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, D. Y.; Majumdar, A.; Zettl, A. Phys. Rev. Lett. 2006, 97, 085901.  

    9. [9]

      (9) Chang, C.W.; Okawa, D.; Majumdar, A.; Zettl, A. Science 2006, 314, 1112.

    10. [10]

      (10) Zhi, C. Y.; Bando, Y.; Tang, C. C.; lberg, D. Materials Science and Engineering R 2010, 70, 92.  

    11. [11]

      (11) Barman, S. A Letters Journal Exploring the Frontiers of Physics 2011, 96, 16004.

    12. [12]

      (12) Stewart, D. A.; Savic, N.; Min , N. Nano Lett. 2009, 9, 81.  

    13. [13]

      (13) Cho, H. B.; Tokoi, Y.; Tanaka, S.; Suematsu, H.; Suzuki, T.; Jiang,W. H.; Niihara, K.; Nakayama, T. Composites Science and Technology 2011, 71, 1046.  

    14. [14]

      (14) Min , N.; Broido, D. A. Nano Lett. 2005, 5(7), 1221.

    15. [15]

      (15) Chang, C.W.; Han,W. Q.; Zettl, A. Journal of Vacuum Science & Technology B 2005, 23, 1883.  

    16. [16]

      (16) Tang, C. C.; Bando, Y.; Liu, C. H.; Fan, S. S.; Zhang, J.; Ding, X. X.; lberg, D. The Journal of Physical Chemistry B 2006, 110, 10354.  

    17. [17]

      (17) Tersoff, J. Phys. Rev. B 1988, 37(12), 6991.  

    18. [18]

      (18) Wang, X.W.; Huang, Z.;Wang, T.; Tang, Y.W.; Zeng, X. C. Physica B 2008, 403, 2021.  

    19. [19]

      (19) Sandia National Laboratories. LAMMPS, Lammps-12Oct10; GNU: USA, 2010.  

    20. [20]

      (20) Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Phys. Rev. B 2002, 65, 144306.  

    21. [21]

      (21) Lindsay, L.; Broido, D. A.; Min , N. Phys. Rev. B 2009, 80, 125407.  

    22. [22]

      (22) Wang, S. C.; Liang, X. G.; Xu, X. H.; Ohara, T. J. Appl. Phys. 2009, 105, 014316.  

    23. [23]

      (23) Turney, J. E.; McGaughey, A. J. H.; Amon, C. H. Phys. Rev. B 2009, 79, 224305.  

    24. [24]

      (24) Munoz, E.; Lu, J. X.; Yakobson, B. I. Nano Lett. 2010, 10, 1652.  

    25. [25]

      (25) Hu, J. N.; Ruan, X. L.; Chen, Y. P. Nano Lett. 2009, 9, 2730.  

    26. [26]

      (26) Sese L. M. Mol. Phys. 1993, 78,1167.  

    27. [27]

      (27) Tchouar, N.; Ould, K. F.; Levesque, D. J. Chem. Phys. 2004, 121, 7326.  

    28. [28]

      (28) harshadi, E. K.; Abbaspour, M.; Kashani, H.; Baherololoom, M. Theor. Chem. Acc. 2008, 119, 355.  

    29. [29]

      (29) Yang, N.; Zhang, G.; Li, B.W. Nano Lett. 2008, 8(1), 276.

    30. [30]

      (30) Kang, D. D.; Hou, Y.; Dai, J. Y.; Yuan, J. M. Phys. Rev. A 2009, 79, 063202.  

    31. [31]

      (31) Huang, M. J.;Weng, C. C.; Chang, T. M. International Journal of Thermal Sciences 2009, 49, 1095.

    32. [32]

      (32) Ren, C. L.; Zhang,W.; Xu, Z. J.; Zhu, Z. Y.; Huai, P. The Journal of Physical Chemistry C 2009, 114(13), 5786.  

    33. [33]

      (33) Xu, Z.P.; Buehler, M.J. Nanotechnology 2009, 20, 185701.  

    34. [34]

      (34) Shen, H. J. Computational Materials Science 2009, 47, 220.  

    35. [35]

      (35) Jiang, J.W.;Wang, J. S. Phys. Rev. B 2011, 84, 085439.  

    36. [36]

      (36) icochea, J. V.; Madrid, M.; Amon, C. ASME J. Heat Transfer 2010, 132, 012401.  

    37. [37]

      (37) Chen, Y. F.; Li, D. Y.; Lukes, J. R.; Majumdar, A. ASME J. Heat Transfer 2005, 127, 1129.  

    38. [38]

      (38) Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phys. Rev. B 2009, 79, 155413.  

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    9. [9]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(1178)
  • Abstract views(2818)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return