Citation: ZHANG Zhe, QI Zhi-Mei, ZHANG Rong-Jun. Direct Electrochemistry of Cytochrome c Adlayer on the ITO Electrode[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1163-1168. doi: 10.3866/PKU.WHXB201202241 shu

Direct Electrochemistry of Cytochrome c Adlayer on the ITO Electrode

  • Received Date: 2 December 2011
    Available Online: 24 February 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB320300) (973) (2009CB320300) 国家自然科学基金(60978042, 61078039) (60978042, 61078039)

  • The electrochemical redox reaction of a cytochrome c (Cyt c) adlayer on an indium tin oxide (ITO) electrode was directly monitored and the surface concentrations of Cyt c versus solution concentrations were obtained from cyclic voltammograms. The results indicate that the surface concentration increases from 0.35 × 10-12 to 1.53 × 10-12 mol·cm-2 when the solution concentration is increased from 2 to 10 μmol ·L-1. A quasi-linear relationship between the reciprocals of surface concentration and solution concentration was observed, indicating that Cyt c adsorption on the ITO electrode closely obeys the Langmuir isothermal adsorption model. The cyclic voltammograms of the Cyt c solutions with the ITO electrode reveal that both adsorbed and dissociated Cyt c molecules are involved in the electrode reaction and that the contribution of dissociated molecules is much larger than that of adsorbed ones. The electrode reaction is basically diffusion controlled and quasi-reversible. Based on the Nicholson method, the average standard heterogeneous rate constant was determined to be 1.65×10-3 cm· s-1. The electrochemical activity of the Cyt c adlayer was partially lost when it was kept at 25 °C for 1 h, and was completely lost at 80 °C. The denatured Cyt c adlayer on a ld electrode can effectively inhibit the electrode reaction of K3Fe(CN)6 solution.
  • 加载中
    1. [1]

      (1) Eddowes, M. J.; Hill, H. A. O. J. Chem. Soc. Chem. Commun. 1977, No. 21, 771.

    2. [2]

      (2) Eddowes, M. J.; Hill, H. A. O. J. Am. Chem. Soc. 1979, 101, 4461.  

    3. [3]

      (3) Ji, X.; Jin, B. K.; Jin, J.; Nakamura, T. J. Electroanal. Chem. 2006, 590, 173.  

    4. [4]

      (4) Ding, X. Q.; Yang, M.; Hu, J. B.; Li, Q. L.; McDougall, A. Microchim. Acta 2007, 158, 65.  

    5. [5]

      (5) Wang, J. L.;Wang, F. A.; Xu, Z. A.;Wang, Y. Z.; Dong, S. J. Talanta 2007, 74, 104.  

    6. [6]

      (6) Wang, L.;Wang, E. K. Electrochem. Commun. 2004, 6, 49.  

    7. [7]

      (7) Jiang, X.; Zhang, Z. L.; Bai, H. Y.; Qu, X. H.; Jiang, J. G.; Wang, E. K.; Dong, S. J. Spectrochimica Acta Part A 2005, 61, 943.  

    8. [8]

      (8) Liang, M. S.; Bai, Y.; Liu, M.; Zheng,W. J. Acta Phys. -Chim. Sin. 2009, 25, 457. [梁敏思, 白燕, 刘敏, 郑文杰. 物理化学学报, 2009, 25, 457.]

    9. [9]

      (9) Tai, Y. H.; Zhou, L. H.;Wang, Y.; Ma, L.;Wang, S. T. Journal of Northeast Normal University 2010, 42, 93. [泰玉华, 周立恒, 王岩, 马丽, 王胜天. 东北师大学报, 2010, 42, 93.]

    10. [10]

      (10) Wang, Q.; Li, N. Q. Electroanalysis 2001, 13, 1375.  

    11. [11]

      (11) Ion, A.; Banica, F. J. Solid State Electrochem. 2001, 5, 431.  

    12. [12]

      (12) Runge, A. F.; Saavedra, S. S. Langmuir 2003, 19, 9418.  

    13. [13]

      (13) Liu, H. H.; Lu, J. L.; Zhang, M.; Pang, D.W.; Abruna, H. D. J. Electroanal. Chem. 2003, 554, 93.

    14. [14]

      (14) McKenzie, K. J.; Marken, F.; Opallo, M. Bioelectrochemistry 2005, 66, 41.  

    15. [15]

      (15) Zhao, Q.; Zhuang, Q. K. Chin. Chem. Lett. 2005, 16, 1237.

    16. [16]

      (16) Ding, X. Q.; Li, J. H.; Hu, J. B.; Li, Q. L. Anal. Biochem. 2005, 339, 46.  

    17. [17]

      (17) Gu, R. A.; Qiao, Z. H.; Qu, X. G.; Lu, T. H.; Dong, S. J. Acta Phys. -Chim. Sin. 1996, 12, 654. [顾仁敖, 乔专虹, 曲晓刚, 陆天虹, 董绍俊. 物理化学学报, 1996, 12, 654.]

    18. [18]

      (18) Qu, X. G.; Sun, G. Q.; Yang, H.; Lu, T. H. Electrochemistry 1998, 4, 260. [曲晓刚, 孙公权, 杨辉, 陆天虹. 电化学, 1998, 4, 260.]

    19. [19]

      (19) Li, J. H.; Cheng, G. J.; Dong, S. J. Chemical Research in Chinese University 1998, 14, 17.

    20. [20]

      (20) Zhang, R. J.; Yin, Q. F.; Xu, J. M.; Zhu, Y. L.; Ma, K. R. Chemical Reagents 2010, 32, 577. [张瑞娟, 尹起范, 徐继明, 朱玉兰, 马奎荣. 化学试剂, 2010, 32, 577.]

    21. [21]

      (21) Xu, J. M.; Zhang, R. J.; Song, J.; Yin, Q. F.; Zhong, H. Chemical Research and Application 2010, 22, 1236. [徐继明, 张瑞娟, 宋洁, 尹起范, 仲慧. 化学研究与应用, 2010, 22, 1236.]

    22. [22]

      (22) Wang, Y.; Qian, K.; Guo, K.; Kong, J. L.; Marty, J. L.; Yu, C. Z.; Liu, B. H. Microchim. Acta 2011, 175, 87.  

    23. [23]

      (23) Kasmi, A. E.; Leopold, M. C.; Galligan, R.; Robertson, R. T.; Saavedra, S. S.; Kacami, K. E.; Bowden, E. F. Electrochem. Commun. 2002, 4, 177.  

    24. [24]

      (24) Shie, J.W.; Yogeswaran, U.; Chen, S. M. Talanta 2008, 74, 1659.  

    25. [25]

      (25) Matsuda, N.; Santos, J. H.; Takatsu, A.; Kato, K. Thin Solid Films 2003, 438-439, 403.  

    26. [26]

      (26) Li, S. Q.; Xia, J.; Liu, C. Y.; Cao,W.; Hu, J. B.; Li, Q. L. J. Electroanal. Chem. 2009, 633, 273.  

    27. [27]

      (27) Yan, J.; Li, J. J.; Zhang, B.; Cai, S. M. Acta Phys. -Chim. Sin. 2001, 17, 1126. [严捷, 李经建, 张波, 蔡生民. 物理化学学报, 2001, 17, 1126.]

    28. [28]

      (28) Renault, C.; Harris, K. D.; Brett, M. J. Chem. Commun. 2011, 47, 1863.  

    29. [29]

      (29) Lee, I.; Lee, S. Y. J. Phys. Chem. C 2009, 113, 17372.  

    30. [30]

      (30) Laviron, E. J. Electroanal. Chem. 1979, 100, 263.  

    31. [31]

      (31) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; JohnWiley & Sons, Inc.: Hoboken, 2001; pp 231-232, 239-243, 590-595.  

    32. [32]

      (32) Nicholson, R. S. Anal. Chem. 1965, 37, 1351.  

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    8. [8]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(952)
  • Abstract views(2383)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return