Citation: YE Qing, ZHANG Yu, LI Ming, SHI Yao. Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1223-1229. doi: 10.3866/PKU.WHXB201202234 shu

Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature

  • Received Date: 18 October 2011
    Available Online: 23 February 2012

    Fund Project: 国家自然科学基金(20976159)资助项目 (20976159)

  • Solid amine adsorbents for low concentration CO2 removal were developed using carbon nanotubes (CNTs) impregnated with tetraethylenepentamine (TEPA) and triethylenetetramine (TETA). The adsorbents were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FITR), N2 adsorption/desorption, elemental analysis and thermogravimetric analysis (TGA). After impregnation, the shapes, fundamental channels and pore structures of the adsorbents were unchanged. However, the surface area and pore volume decreased. The adsorption behavior toward low concentration CO2 was investigated in a fixed-bed column. The results indicated that the adsorption capacity was enhanced substantially by modification. The CO2 adsorption capacity of CNTs-TEPA was higher than that of CNTs-TETA with the same amount of amine loading. The adsorption capacity increased steadily from 126.7 to 139.3 mg·g-1 for CNTs-TEPA and from 101.2 to 110.4 mg·g-1 for CNTs-TETA as the temperature increased from 20 to 30 ℃. The adsorption capacity of the raw CNTs experienced a modest increase, but began to decrease gradually with further temperature increases. Suyadal and Yasyerli deactivation models were applied to investigate the experimental breakthrough curves of raw and modified CNTs. It was concluded that the Yasyerli deactivation model is more appropriate to analyze the breakthrough curves of CO2 adsorption on solid amine adsorbents.
  • 加载中
    1. [1]

      (1) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  

    2. [2]

      (2) Serna-Guerrero, R.; Sayari, A. Chem. Eng. J. 2010, 161, 182.  

    3. [3]

      (3) Zhang, P.; Shi, Y.;Wei, J.; Zhao,W.; Ye, Q. J. Environ. Sci. 2008, 20, 39.  

    4. [4]

      (4) Shi, J. J.; Liu, Y. M.; Chen, J.; Zhang, Y.; Shi, Y. Acta Phys.-Chim.Sin. 2010, 26 (11), 3023. [史晶金, 刘亚敏, 陈杰, 张瑜, 施耀. 物理化学学报, 2010, 26 (11), 3023.]

    5. [5]

      (5) Moloney, P.; Huffman, C.; relik, O.; Nikolaev, P.; Arepalli, S.; Allada, R.; Springer, M.; Yowell, L. Advanced Life Support for Space Exploration: Air Revitalization Using Amine Coated SingleWall Carbon Nanotubes. In Materials for Space Applications, Symposium on Materials for Space Applications, Boston, USA, Nov. 29-Dec. 03.2004; Chipara, M.; Edwards, D. L.; Benson, R.S.; Phillips, S., Eds.; Materials Research Society: Warrendale, 2005; 59.

    6. [6]

      (6) Feron, P.; Jacobs, P.; Paul, P.; Savage, C.;Witt, J. Integrated CO2 and Humidity Control by Membrane Gas Absorption. In ESA Special Publications, Sixth European Symposium on Space Environmental Control Systems, Noordwijk, Netherlands, 1997, May 20-22, 1997; Guyenne, T.D., Eds.; European Space Agency: Paris, 1997; 761.

    7. [7]

      (7) Hwang, H. T.; Harale, A.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. J.Membr.Sci. 2008, 315, 116.  

    8. [8]

      (8) Oyenekan, B. A.; Rochelle, G. T. AIChE J. 2007, 53, 3144.  

    9. [9]

      (9) Sridharab, S.; Smithab, B.;Aminabhavia,T. M. Sep.Purif. Rev. 2007, 36, 113.  

    10. [10]

      (10) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2009, 49, 359.

    11. [11]

      (11) Wang, X.; Schwartz, V.; Clark, J. C.; Ma, X.; Overbury, S. H.; Xu, X.; Song, C. J. Phys. Chem.C 2009, 113, 7260.  

    12. [12]

      (12) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250.  

    13. [13]

      (13) Somy, A.; Mehrnia, M. R.; Amrei, H. D.; Ghanizadeh, A.; Safari, M. Int. J. Greenh.Gas Con. 2009, 3, 249.  

    14. [14]

      (14) Hsu, S.; Lu, C. Sep. Sci. Technol. 2007, 42, 2751.  

    15. [15]

      (15) Wei, J.W.; Shi, J.J.; Pan, H.; Zhao,W.; Ye, Q.; Shi, Y. Microporous Mesoporous Mat. 2008, 116, 394.  

    16. [16]

      (16) Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Microporous Mesoporous Mat. 2008, 116, 358.  

    17. [17]

      (17) Su, F.; Lu, C.; Cnen,W.; Bai, H.; Hwang, J. F. Sci. Total Environ. 2009, 407, 3017.  

    18. [18]

      (18) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys.-Chim. Sin. 2007, 23 (6), 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23 (6), 801. ]

    19. [19]

      (19) Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M. Microporous Mesoporous Mat. 2011, 143, 174.  

    20. [20]

      (20) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Ind. Eng. Chem. Res. 2003, 42, 2427.  

    21. [21]

      (21) Zhu, Z. Z.;Wang, Z.; Li, H. L. Appl. Surf. Sci. 2008, 254, 2934.  

    22. [22]

      (22) Krishen, K. Acta Astronaut. 2008, 63, 324.  

    23. [23]

      (23) Smart, S.; Cassady, A.; Lu, G.; Martin, D. Carbon 2006, 44, 1034.  

    24. [24]

      (24) mmans, H. H.; Alldredge, J.W.; Tashiro, H .; Park, J.; Magnuson, J.; Rinzler, A. G. J. Appl.Phys. 2000, 88, 2509.  

    25. [25]

      (25) Chang, A. C. C.; Chuang, S. S. C.; Gray, M. M.; Soong, Y. Energy Fuels 2003, 17, 468.  

    26. [26]

      (26) Serna-Guerrero, R.; Da'na, E.; Sayari, A. Ind. Eng. Chem. Res. 2008, 47, 9406.  

    27. [27]

      (27) Danckwerts, P. V. Chem. Eng. Sci. 1979, 34, 443.  

    28. [28]

      (28) Versteeg, G. F.; van Dijck, L. A. J.; van Swaaij,W. P. M. Chem. Eng. Com. 1996, 144, 113.  

    29. [29]

      (29) Suyadal, Y.; Erol, M.; Oguz, H. Ind. Eng. Chem. Res. 2000, 39, 724.  

    30. [30]

      (30) Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T. Ind. Eng. Chem. Res. 2001, 40, 5206.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(1137)
  • Abstract views(2418)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return