Citation: YE Qing, ZHANG Yu, LI Ming, SHI Yao. Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1223-1229. doi: 10.3866/PKU.WHXB201202234
-
Solid amine adsorbents for low concentration CO2 removal were developed using carbon nanotubes (CNTs) impregnated with tetraethylenepentamine (TEPA) and triethylenetetramine (TETA). The adsorbents were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FITR), N2 adsorption/desorption, elemental analysis and thermogravimetric analysis (TGA). After impregnation, the shapes, fundamental channels and pore structures of the adsorbents were unchanged. However, the surface area and pore volume decreased. The adsorption behavior toward low concentration CO2 was investigated in a fixed-bed column. The results indicated that the adsorption capacity was enhanced substantially by modification. The CO2 adsorption capacity of CNTs-TEPA was higher than that of CNTs-TETA with the same amount of amine loading. The adsorption capacity increased steadily from 126.7 to 139.3 mg·g-1 for CNTs-TEPA and from 101.2 to 110.4 mg·g-1 for CNTs-TETA as the temperature increased from 20 to 30 ℃. The adsorption capacity of the raw CNTs experienced a modest increase, but began to decrease gradually with further temperature increases. Suyadal and Yasyerli deactivation models were applied to investigate the experimental breakthrough curves of raw and modified CNTs. It was concluded that the Yasyerli deactivation model is more appropriate to analyze the breakthrough curves of CO2 adsorption on solid amine adsorbents.
-
-
[1]
(1) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.
-
[2]
(2) Serna-Guerrero, R.; Sayari, A. Chem. Eng. J. 2010, 161, 182.
-
[3]
(3) Zhang, P.; Shi, Y.;Wei, J.; Zhao,W.; Ye, Q. J. Environ. Sci. 2008, 20, 39.
-
[4]
(4) Shi, J. J.; Liu, Y. M.; Chen, J.; Zhang, Y.; Shi, Y. Acta Phys.-Chim.Sin. 2010, 26 (11), 3023. [史晶金, 刘亚敏, 陈杰, 张瑜, 施耀. 物理化学学报, 2010, 26 (11), 3023.]
-
[5]
(5) Moloney, P.; Huffman, C.; relik, O.; Nikolaev, P.; Arepalli, S.; Allada, R.; Springer, M.; Yowell, L. Advanced Life Support for Space Exploration: Air Revitalization Using Amine Coated SingleWall Carbon Nanotubes. In Materials for Space Applications, Symposium on Materials for Space Applications, Boston, USA, Nov. 29-Dec. 03.2004; Chipara, M.; Edwards, D. L.; Benson, R.S.; Phillips, S., Eds.; Materials Research Society: Warrendale, 2005; 59.
-
[6]
(6) Feron, P.; Jacobs, P.; Paul, P.; Savage, C.;Witt, J. Integrated CO2 and Humidity Control by Membrane Gas Absorption. In ESA Special Publications, Sixth European Symposium on Space Environmental Control Systems, Noordwijk, Netherlands, 1997, May 20-22, 1997; Guyenne, T.D., Eds.; European Space Agency: Paris, 1997; 761.
-
[7]
(7) Hwang, H. T.; Harale, A.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. J.Membr.Sci. 2008, 315, 116.
-
[8]
(8) Oyenekan, B. A.; Rochelle, G. T. AIChE J. 2007, 53, 3144.
-
[9]
(9) Sridharab, S.; Smithab, B.;Aminabhavia,T. M. Sep.Purif. Rev. 2007, 36, 113.
-
[10]
(10) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2009, 49, 359.
-
[11]
(11) Wang, X.; Schwartz, V.; Clark, J. C.; Ma, X.; Overbury, S. H.; Xu, X.; Song, C. J. Phys. Chem.C 2009, 113, 7260.
-
[12]
(12) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250.
-
[13]
(13) Somy, A.; Mehrnia, M. R.; Amrei, H. D.; Ghanizadeh, A.; Safari, M. Int. J. Greenh.Gas Con. 2009, 3, 249.
- [14]
-
[15]
(15) Wei, J.W.; Shi, J.J.; Pan, H.; Zhao,W.; Ye, Q.; Shi, Y. Microporous Mesoporous Mat. 2008, 116, 394.
-
[16]
(16) Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Microporous Mesoporous Mat. 2008, 116, 358.
-
[17]
(17) Su, F.; Lu, C.; Cnen,W.; Bai, H.; Hwang, J. F. Sci. Total Environ. 2009, 407, 3017.
-
[18]
(18) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys.-Chim. Sin. 2007, 23 (6), 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23 (6), 801. ]
-
[19]
(19) Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M. Microporous Mesoporous Mat. 2011, 143, 174.
-
[20]
(20) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Ind. Eng. Chem. Res. 2003, 42, 2427.
-
[21]
(21) Zhu, Z. Z.;Wang, Z.; Li, H. L. Appl. Surf. Sci. 2008, 254, 2934.
- [22]
-
[23]
(23) Smart, S.; Cassady, A.; Lu, G.; Martin, D. Carbon 2006, 44, 1034.
-
[24]
(24) mmans, H. H.; Alldredge, J.W.; Tashiro, H .; Park, J.; Magnuson, J.; Rinzler, A. G. J. Appl.Phys. 2000, 88, 2509.
-
[25]
(25) Chang, A. C. C.; Chuang, S. S. C.; Gray, M. M.; Soong, Y. Energy Fuels 2003, 17, 468.
-
[26]
(26) Serna-Guerrero, R.; Da'na, E.; Sayari, A. Ind. Eng. Chem. Res. 2008, 47, 9406.
-
[27]
(27) Danckwerts, P. V. Chem. Eng. Sci. 1979, 34, 443.
-
[28]
(28) Versteeg, G. F.; van Dijck, L. A. J.; van Swaaij,W. P. M. Chem. Eng. Com. 1996, 144, 113.
-
[29]
(29) Suyadal, Y.; Erol, M.; Oguz, H. Ind. Eng. Chem. Res. 2000, 39, 724.
-
[30]
(30) Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T. Ind. Eng. Chem. Res. 2001, 40, 5206.
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[4]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[5]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
-
[8]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[9]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[10]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[11]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[12]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[13]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[14]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[15]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[16]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[19]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[20]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[1]
Metrics
- PDF Downloads(1137)
- Abstract views(2418)
- HTML views(30)