Citation: ZHANG Ren-Kai, SUN Zhe, XIE Huan-Huan, LIANG Mao, XUE Song. New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1139-1145. doi: 10.3866/PKU.WHXB201202233 shu

New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination

  • Received Date: 21 November 2011
    Available Online: 23 February 2012

    Fund Project: 国家自然科学基金(21003096, 21103123)资助项目 (21003096, 21103123)

  • A comb-like copolymer based on N-propylvinylimidazolium iodide (VImI) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) was synthesized. The VImI/PEGMA copolymer was used to prepare quasi-solid electrolytes. The charge transport and interfacial charge transfer of the dye-sensitized solar cells (DSSCs) based on the quasi-solid electrolytes were investigated using photocurrent density-voltage (J-V) curves, ionic conductivities, and impedance spectra. It was found that the copolymer plays an active role in decreasing the electron recombination at TiO2/electrolyte interface and increases the conduction band edge of TiO2. The photovoltaic characteristics of the DSSCs are therefore not determined entirely by the conductivity of the quasi-solid electrolyte. Based on the dependence of the open-circuit voltage on the VImI/PEGMA molar ratio, the decrease of recombination is primarily ascribed to the contribution of VImI segments. In addition, open-circuit voltage decay (OCVD) and photocurrent transient results indicate that the introduction of the copolymer not only extends the electron lifetime but also tunes the energy distribution of the localized electrons. When the VImI/PEGMA molar ratio reaches 5.0 and the mass fraction of copolymer in the quasi-solid electrolyte is 50%, the DSSC yields an energy conversion efficiency of 4.10% under an illumination intensity of 100 mW·cm-2.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  

    3. [3]

      (3) Ardo, A.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115.  

    4. [4]

      (4) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  

    5. [5]

      (5) Han, L. Y.; Fukui, Y.; Chiba, Y.; Islam, A.; Komiya, R.; Fuke, N.; Koide, N.; Yamanaka, R.; Shimizu, M. Appl. Phys. Lett. 2009, 94, 013305.  

    6. [6]

      (6) Nogueira, A. F.; Lon , C.; De Paoli, M. A. Coord. Chem. Rev. 2004, 248, 1455.  

    7. [7]

      (7) Haque, S. A.; Park, T.; Xu, C. G.; Koops, S.; Schulte, N.; Potter, R. J.; Holmes, A. B.; Durrant, J. R. Adv. Funct. Mater. 2004, 14, 435.  

    8. [8]

      (8) Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Hao, S. C.; Sato, T.; Yin, S. Adv. Mater. 2007, 19, 4006.  

    9. [9]

      (9) Kang, M. S.; Ahn, K. S.; Lee, J.W. J. Power Sources 2008, 180, 896.  

    10. [10]

      (10) Saikia, D.; Han, C. C.; Chen-Yang, Y.W. J. Power Sources 2008, 185, 570.  

    11. [11]

      (11) Yang, Y.; Zhang, J.; Zhou, C. H.;Wu, S. J.; Xu, S.; Liu,W.; Han, H.W.; Chen, B. L.; Zhao, X. Z. J. Phys. Chem. B 2008, 112, 6594.  

    12. [12]

      (12) Lee, J. Y.; Bhattacharya, B.; Kim, D.W.; Park, J. K. J. Phys. Chem. C 2008, 112, 12576.  

    13. [13]

      (13) Xiang,W. C.; Zhou, S. H.; Yin, X.; Xiao, X. R.; Lin, Y.; Fang, S. B. Polym. Adv. Technol. 2009, 20, 519.  

    14. [14]

      (14) Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N. G.; Ahn, K. D. J. Power Sources 2008, 175, 692.  

    15. [15]

      (15) Wang, M.; Lin, Y.; Zhou, X.W.; Xiao, X. R.; Yang, L.; Feng, S. J.; Li, X. P. Mater. Chem. Phys. 2008, 107, 61.  

    16. [16]

      (16) Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M. Thin Solid Films 2008, 516, 4613.  

    17. [17]

      (17) Freitas, F. S.; De Freitas, J. N.; Bruno, I. Ito.; De Paoli, M. A.; Nogueira, A. F. ACS Appl. Mater. Inter. 2009, 1, 2870.  

    18. [18]

      (18) Benedetti, J. E.; ncalves, A. D.; Formiga, A. L .B.; De Paoli, M. A.; Li, X.; Durrant, J. R.; Nogueira, A. F. J. Power Sources 2010, 195, 1246.  

    19. [19]

      (19) Wang, H. X.; Peter, L. M. J. Phys. Chem. C 2009, 113, 18125.  

    20. [20]

      (20) Patel, R.; Seo, J. A.; Koh, J. H.; Kim, J. H.; Kang, Y. S. J. Photochem. Photobio. A: Chem. 2011, 217, 169.  

    21. [21]

      (21) Yang,Y.; Hu, H.; Zhou, C. H.; Xu, S.; Sebo, B.; Zhao, X. Z. J. Power Sources 2011, 196, 2410.  

    22. [22]

      (22) Lin, X.;Wu, M. X.; An, J.; Miao, Q. Q.; Qin, D.; Ma, T. L. Acta Phys. -Chim. Sin. 2011, 27, 2577. [林逍, 武明星, 安江, 苗青青, 覃达, 马廷丽. 物理化学学报, 2011, 27, 2577.]

    23. [23]

      (23) Fabregat-Santia , F.; Garcia-Belmonte, G.; Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 334.  

    24. [24]

      (24) Jennings, J. R.;Wang, Q. J. Phys. Chem. C 2010, 114, 1715.  

    25. [25]

      (25) Sun, Z.; Zhang, R. K.; Xie, H. H.; Liang, M.; Du, R. H.; Xue, S. Electrochim. Acta 2011, 56, 7555.  

    26. [26]

      (26) Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Seró, I. J. Am. Chem. Soc. 2004, 126, 13550.  

    27. [27]

      (27) Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859.  

    28. [28]

      (28) Peter, L. M. J. Phys. Chem. C 2007, 111, 6601.  

    29. [29]

      (29) Barnes, P.; O'Regan, B. J. Phys. Chem. C 2010, 114, 19134.  

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    4. [4]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    13. [13]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(840)
  • Abstract views(2302)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return