Citation: LÜ Yong-Jun, CHEN Min. Molecular Transport through Finite-Length Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1070-1076. doi: 10.3866/PKU.WHXB201202213 shu

Molecular Transport through Finite-Length Carbon Nanotubes

  • Received Date: 21 December 2011
    Available Online: 21 February 2012

    Fund Project: 国家自然科学基金(51076078, 51171027)资助项目 (51076078, 51171027)

  • The transport of helium molecules in open and finite-length single-walled carbon nanotubes was studied using non-equilibrium molecular dynamics simulations. We observed that helium molecules were transported through nanotubes with the high mobility characterized by superdiffusion. A transition from superdiffusion to near-ballistic motion occurs when the diameter is larger than a threshold value, and then the transport is again dominated by the superdiffusion. This change is closely related to nanotube ends. Simulations show that molecules are transported rapidly in the nanotubes via ballistic motion, which, however, is dispersed by the potential barrier at the ends of the nanotubes. This blocking effect is jointly determined by the potential barrier and the nanotube diameter.
  • 加载中
    1. [1]

      (1) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.;Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377.  

    2. [2]

      (2) Simonyan, V. V.; Johnson, J. K. J. Alloy. Compd. 2002,330-332, 659.

    3. [3]

      (3) Hilder, T. A.; Hill, J. M. Small 2009, 5, 300.  

    4. [4]

      (4) Bianco, A.; Kostarelos, K.; Prato, M. Curr. Opin. Chem. Biol.2005, 9, 674.  

    5. [5]

      (5) Ghosh, S.; Sood, A. K.; Kumar, N. Science 2003, 299, 1042.  

    6. [6]

      (6) Cheng,Y.W.;Yang, Z.;Wei, H.;Wang,Y.Y.;Wei, L. M.; Zhang,Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3127. [程应武, 杨志,魏浩, 王艳艳, 魏良明, 张亚非. 物理化学学报, 2010, 26,3127.]

    7. [7]

      (7) Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.;Ajayan, P. M. Nat. Mater. 2004, 3, 610.  

    8. [8]

      (8) Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 12340.  

    9. [9]

      (9) Wen, X. N.; Zhang, J.; Gu,W. X.; Jin, H. H.; Li, H. B.; Li, Q.W.Acta Phys. -Chim. Sin. 2010, 26, 2757. [温晓南, 张静, 顾文秀, 金赫华, 李红波, 李清文. 物理化学学报, 2010, 26, 2757.]

    10. [10]

      (10) Skoulidas, A. I.; Ackerman, D. M.; Johnson, J. K.; Sholl, D. S.Phys. Rev. Lett. 2002, 89, 185901.  

    11. [11]

      (11) Chen, H. B.; Sholl, D. S. J. Am. Chem. Soc. 2004, 126, 7778.  

    12. [12]

      (12) Arora, G.; Sandler, S. I. J. Chem. Phys. 2006, 124, 084702.  

    13. [13]

      (13) Tuzun, R. E.; Noid, D.W.; Sumpter, B. G.; Merkle, R. C.Nanotechnology 1996, 7, 241.  

    14. [14]

      (14) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188.  

    15. [15]

      (15) Della , C.; Hummer, G. Phys. Rev. Lett. 2006, 97, 245901.  

    16. [16]

      (16) Cambré, S.; Schoeters, B.; Luyckx, S.; ovaerts, E.;Wenseleers,W. Phys. Rev. Lett. 2010, 104, 207401.  

    17. [17]

      (17) Skoulidas, A. I.; Sholl, D. S.; Johnson, J. K. J. Chem. Phys.2006, 124, 054708.  

    18. [18]

      (18) Holt, J. K.; Park, H. G.;Wang, Y.; Stadermann, M.; Artyukhin,A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006,312, 1034.  

    19. [19]

      (19) Le as, S. B.; Giro, R.; Galvao, D. S. Chem. Phys. Lett. 2004,386, 425.  

    20. [20]

      (20) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000,287, 1801.  

    21. [21]

      (21) Baei, M. T.; Soltani, A. Z.; Moradi, A. V.; Moghimi, M.Monatsh. Chem. 2011, 142, 573.  

    22. [22]

      (22) Babu, J. S.; Sathian, S. P. J. Appl. Phys. 2011, 134, 194509.

    23. [23]

      (23) Majumder, S. R.; Choudhury, N.; Ghosh, S. K. J. Chem. Phys.2007, 127, 054706.  

    24. [24]

      (24) Lee, J.; Aluru, N. R. Appl. Phys. Lett. 2010, 96, 133108.  

    25. [25]

      (25) Chan, Y.; Hill, J. M. J. Membr. Sci. 2011, 372, 57.  

    26. [26]

      (26) Hahn, K.; Kärger, J.; Kukla, V. Phys. Rev. Lett. 1996, 76, 2762.  

    27. [27]

      (27) Lin, B.; Meron, M.; Cui, B.; Rice, S. A.; Diamant, H. Phys. Rev. Lett. 2005, 94, 216001.  

    28. [28]

      (28) Chen, Q.; Moore, J. D.; Liu, Y.; Roussel, T. J.;Wang, Q.;Wu,T.; Gubbins, K. E. J. Chem. Phys. 2010, 133, 094501.  

    29. [29]

      (29) Lee, K. H.; Sinnott, S. B. Int. J. Multiscale Com. 2005, 3, 379.  

    30. [30]

      (30) Ott, T.; Bonitz, M.; Donko, Z.; Hartmann, P. Phys. Rev. E 2008,78, 026409.  

    31. [31]

      (31) Siegle, P.; ychuk, I.; Hanggi, P. Phys. Rev. Lett. 2010, 105,100602.  

    32. [32]

      (32) Bhide, S. Y.; Yashonath, S. J. Am. Chem. Soc. 2003, 125, 7425.  

    33. [33]

      (33) Lee, K. H.; Sinnott, S. B. J. Phys. Chem. B 2004, 108, 9861.  

    34. [34]

      (34) Heffelfinger, G. S.; van Swol, F. J. Chem. Phys. 1994, 100, 7548.  

    35. [35]

      (35) Cannon, J.; Hess, O. Microfluid Nanofluid 2010, 8, 21.  

    36. [36]

      (36) Evans, D. J.; Holian, B. L. J. Chem. Phys. 1985, 83, 4069.  

    37. [37]

      (37) Hanasaki, I.; Nakatani, A.; Kitagawa, H. Sci. Tech. Adv. Mater.2004, 5, 107.  

    38. [38]

      (38) Jakobtorweihen, S.; Keil, F. J.; Smit, B. J. Phys. Chem. B 2006,110, 16332.  

    39. [39]

      (39) Tersoff, J. Phys. Rev. Lett. 1986, 56, 632.  

    40. [40]

      (40) Tersoff, J. Phys. Rev. B 1988, 37, 6991.  

    41. [41]

      (41) Brenner, D.W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.;Ni, B.; Sinnott, S. B. J. Phys.: Condes. Matter 2002, 14, 783.  

    42. [42]

      (42) Allen, M. P.; Tidesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, 1989.  

    43. [43]

      (43) Lü, Y. J.; Chen, M. Nanotechnology 2008, 19, 215707.  

    44. [44]

      (44) Fois, E.; Gamba, A.; Tabacchi, G.; Quartieri, S.; Vezzalini, G.J. Phys. Chem. B 2001, 105, 3012.  

    45. [45]

      (45) Druger, S. D.; Nitzen, A.; Ratner, M. A. J. Chem. Phys. 1983,79, 3133.  

    46. [46]

      (46) Wei, Q. H.; Bechinger, C.; Leiderer, P. Science 2000, 287, 625.  

    47. [47]

      (47) Ye, H.; Zhang, H.; Zheng, Y.; Zhang, Z. Microfluid Nanofluid2011, 10, 1359.  

    48. [48]

      (48) Zheng, Y.; Ye, H.; Zhang, Z.; Zhang, H. Phys. Chem. Chem. Phys. 2012, 14, 964.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    6. [6]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    7. [7]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(913)
  • Abstract views(2372)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return