Citation:
LÜ Yong-Jun, CHEN Min. Molecular Transport through Finite-Length Carbon Nanotubes[J]. Acta Physico-Chimica Sinica,
;2012, 28(05): 1070-1076.
doi:
10.3866/PKU.WHXB201202213
-
The transport of helium molecules in open and finite-length single-walled carbon nanotubes was studied using non-equilibrium molecular dynamics simulations. We observed that helium molecules were transported through nanotubes with the high mobility characterized by superdiffusion. A transition from superdiffusion to near-ballistic motion occurs when the diameter is larger than a threshold value, and then the transport is again dominated by the superdiffusion. This change is closely related to nanotube ends. Simulations show that molecules are transported rapidly in the nanotubes via ballistic motion, which, however, is dispersed by the potential barrier at the ends of the nanotubes. This blocking effect is jointly determined by the potential barrier and the nanotube diameter.
-
-
-
[1]
(1) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.;Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377.
-
[2]
(2) Simonyan, V. V.; Johnson, J. K. J. Alloy. Compd. 2002,330-332, 659.
- [3]
-
[4]
(4) Bianco, A.; Kostarelos, K.; Prato, M. Curr. Opin. Chem. Biol.2005, 9, 674.
-
[5]
(5) Ghosh, S.; Sood, A. K.; Kumar, N. Science 2003, 299, 1042.
-
[6]
(6) Cheng,Y.W.;Yang, Z.;Wei, H.;Wang,Y.Y.;Wei, L. M.; Zhang,Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3127. [程应武, 杨志,魏浩, 王艳艳, 魏良明, 张亚非. 物理化学学报, 2010, 26,3127.]
-
[7]
(7) Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.;Ajayan, P. M. Nat. Mater. 2004, 3, 610.
-
[8]
(8) Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 12340.
-
[9]
(9) Wen, X. N.; Zhang, J.; Gu,W. X.; Jin, H. H.; Li, H. B.; Li, Q.W.Acta Phys. -Chim. Sin. 2010, 26, 2757. [温晓南, 张静, 顾文秀, 金赫华, 李红波, 李清文. 物理化学学报, 2010, 26, 2757.]
-
[10]
(10) Skoulidas, A. I.; Ackerman, D. M.; Johnson, J. K.; Sholl, D. S.Phys. Rev. Lett. 2002, 89, 185901.
-
[11]
(11) Chen, H. B.; Sholl, D. S. J. Am. Chem. Soc. 2004, 126, 7778.
-
[12]
(12) Arora, G.; Sandler, S. I. J. Chem. Phys. 2006, 124, 084702.
-
[13]
(13) Tuzun, R. E.; Noid, D.W.; Sumpter, B. G.; Merkle, R. C.Nanotechnology 1996, 7, 241.
-
[14]
(14) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188.
-
[15]
(15) Della , C.; Hummer, G. Phys. Rev. Lett. 2006, 97, 245901.
-
[16]
(16) Cambré, S.; Schoeters, B.; Luyckx, S.; ovaerts, E.;Wenseleers,W. Phys. Rev. Lett. 2010, 104, 207401.
-
[17]
(17) Skoulidas, A. I.; Sholl, D. S.; Johnson, J. K. J. Chem. Phys.2006, 124, 054708.
-
[18]
(18) Holt, J. K.; Park, H. G.;Wang, Y.; Stadermann, M.; Artyukhin,A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006,312, 1034.
-
[19]
(19) Le as, S. B.; Giro, R.; Galvao, D. S. Chem. Phys. Lett. 2004,386, 425.
-
[20]
(20) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000,287, 1801.
-
[21]
(21) Baei, M. T.; Soltani, A. Z.; Moradi, A. V.; Moghimi, M.Monatsh. Chem. 2011, 142, 573.
-
[22]
(22) Babu, J. S.; Sathian, S. P. J. Appl. Phys. 2011, 134, 194509.
-
[23]
(23) Majumder, S. R.; Choudhury, N.; Ghosh, S. K. J. Chem. Phys.2007, 127, 054706.
-
[24]
(24) Lee, J.; Aluru, N. R. Appl. Phys. Lett. 2010, 96, 133108.
- [25]
-
[26]
(26) Hahn, K.; Kärger, J.; Kukla, V. Phys. Rev. Lett. 1996, 76, 2762.
-
[27]
(27) Lin, B.; Meron, M.; Cui, B.; Rice, S. A.; Diamant, H. Phys. Rev. Lett. 2005, 94, 216001.
-
[28]
(28) Chen, Q.; Moore, J. D.; Liu, Y.; Roussel, T. J.;Wang, Q.;Wu,T.; Gubbins, K. E. J. Chem. Phys. 2010, 133, 094501.
-
[29]
(29) Lee, K. H.; Sinnott, S. B. Int. J. Multiscale Com. 2005, 3, 379.
-
[30]
(30) Ott, T.; Bonitz, M.; Donko, Z.; Hartmann, P. Phys. Rev. E 2008,78, 026409.
-
[31]
(31) Siegle, P.; ychuk, I.; Hanggi, P. Phys. Rev. Lett. 2010, 105,100602.
-
[32]
(32) Bhide, S. Y.; Yashonath, S. J. Am. Chem. Soc. 2003, 125, 7425.
-
[33]
(33) Lee, K. H.; Sinnott, S. B. J. Phys. Chem. B 2004, 108, 9861.
-
[34]
(34) Heffelfinger, G. S.; van Swol, F. J. Chem. Phys. 1994, 100, 7548.
- [35]
-
[36]
(36) Evans, D. J.; Holian, B. L. J. Chem. Phys. 1985, 83, 4069.
-
[37]
(37) Hanasaki, I.; Nakatani, A.; Kitagawa, H. Sci. Tech. Adv. Mater.2004, 5, 107.
-
[38]
(38) Jakobtorweihen, S.; Keil, F. J.; Smit, B. J. Phys. Chem. B 2006,110, 16332.
- [39]
- [40]
-
[41]
(41) Brenner, D.W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.;Ni, B.; Sinnott, S. B. J. Phys.: Condes. Matter 2002, 14, 783.
-
[42]
(42) Allen, M. P.; Tidesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, 1989.
- [43]
-
[44]
(44) Fois, E.; Gamba, A.; Tabacchi, G.; Quartieri, S.; Vezzalini, G.J. Phys. Chem. B 2001, 105, 3012.
-
[45]
(45) Druger, S. D.; Nitzen, A.; Ratner, M. A. J. Chem. Phys. 1983,79, 3133.
-
[46]
(46) Wei, Q. H.; Bechinger, C.; Leiderer, P. Science 2000, 287, 625.
-
[47]
(47) Ye, H.; Zhang, H.; Zheng, Y.; Zhang, Z. Microfluid Nanofluid2011, 10, 1359.
-
[48]
(48) Zheng, Y.; Ye, H.; Zhang, Z.; Zhang, H. Phys. Chem. Chem. Phys. 2012, 14, 964.
-
[1]
-
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[3]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[4]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[5]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[6]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[7]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[8]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[9]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[10]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[11]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[12]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[13]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[14]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[15]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[16]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[17]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[18]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[19]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[20]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[1]
Metrics
- PDF Downloads(913)
- Abstract views(2398)
- HTML views(16)