Citation: ZHAO Jian-Xi, YANG Duo-Ping. Highly Viscoelastic Worm-Like Micelle Solution of Sodium Hexadecyl Sulfate Induced by Bolaform Counterions[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1218-1222. doi: 10.3866/PKU.WHXB201202211 shu

Highly Viscoelastic Worm-Like Micelle Solution of Sodium Hexadecyl Sulfate Induced by Bolaform Counterions

  • Received Date: 16 November 2011
    Available Online: 21 February 2012

    Fund Project: 国家自然科学基金(20673021, 20873024) (20673021, 20873024)福建省自然科学基金(2010J01038)资助项目 (2010J01038)

  • The rheological behaviors of mixed aqueous solutions of sodium hexadecyl sulfate (SHS) and a bolaform salt, either N,N'-ethanediyl-α,ω-bis(ethyldimethylammonium bromide) (Bola2Et) or N,N'- propanediyl-α,ω-bis(trimethylammonium bromide) (Bola4), were investigated by steady-state and frequency-sweep measurements. The results showed that long worm-like micelles were formed in both systems at 45 °C, and the solutions exhibited high viscoelasticities, especially the SHS/Bola2Et system in which the solution had very high elasticity. The zero-shear viscosity of SHS/Bola2Et was as high as 2520 Pa·s, and the system was gel-like. These results were attributed to the formation of 2:1 complexes by electrostatic attraction. Since the spacers of both Bola counterions were shorter than the distance between quaternary ammonium ions under electrostatic equilibrium, the generated complex in shape favored formation of worm-like micelles. In comparison, it was difficult to induce SHS to form worm-like micelles by the addition of tetramethylammonium counterions, and the solution exhibited low viscosity.
  • 加载中
    1. [1]

      (1) Dreiss, C. A. Soft Matter 2007, 3, 956 and references therein.  

    2. [2]

      (2) Ezrahi, S.; Tuval, E.; Aserin, A. Adv. Colloid Interface Sci. 2006, 128-130, 77 and references therein.  

    3. [3]

      (3) Trickett, K.; Eastoe, J. Adv. Colloid Interface Sci. 2008, 144, 66 and references therein.  

    4. [4]

      (4) Shikata, T.; Hirata, H. Langmuir 1987, 3, 1081.  

    5. [5]

      (5) Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1988, 4, 354.  

    6. [6]

      (6) Makhloufi, R.; Hirsch, E.; Candau, S. J.; Binana-Limbele,W.; Zana, R. J. Phys. Chem. 1989, 93, 8095.  

    7. [7]

      (7) Ali, A. A.; Makhloufi, R. Phys. Rev. E 1997, 56, 4474.  

    8. [8]

      (8) Ali, A. A.; Makhloufi, R. Colloid Polym. Sci. 1999, 277, 270.  

    9. [9]

      (9) Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller,W. G. J. Phys. Chem. 1992, 96, 474.  

    10. [10]

      (10) Aswal, V. K.; yal, P. S.; Thiyagarajan, P. J. Phys. Chem. B 1998, 102, 2469.  

    11. [11]

      (11) Soltero, J. F. A.; Puig, J. E.; Manero, O. Langmuir 1996, 12, 2654.  

    12. [12]

      (12) Maitland, G. C. Curr. Opin. Colloid Interface Sci. 2000, 5, 301.  

    13. [13]

      (13) (a) Magid, L. J.; Li, Z.; Butler, P. D. Langmuir 2000, 16, 10028. (b) Arleth, L.; Bergström, M.; Pedersen, J. S. Langmuir 2002, 18, 5343.  

    14. [14]

      (14) (a) Mu, J. H.; Li, G. Z. Colloid Polym. Sci. 2001, 279, 872. (b) Mu, J. H.; Li, G. Z.;Wang, Z.W. Rheol. Acta 2002, 41, 493. (c) Mu, J. H.; Li, G. Z.; Jia, X. L.;Wang, H. X.; Zhang, G. Y. J. Phys. Chem. B 2002, 106, 11685. (d) Mu, J. H.; Li, G. Z. Chem. Phys. Lett. 2001, 345, 100.  

    15. [15]

      (15) Kalur, G. C.; Raghavan, S. R. J. Phys. Chem. B 2005, 109, 8599.  

    16. [16]

      (16) Menger, F. M.; Littau, C. A. J. Am. Chem. Soc. 1993, 113, 1451.

    17. [17]

      (17) Kern, F.; Lequeux, F.; Zana, R.; Candau, S. J. Langmuir 1994, 10, 1714.  

    18. [18]

      (18) Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995, 11, 1448.  

    19. [19]

      (19) Oda, R.; Huc, I.; Homo, J. C.; Heinrich, B.; Schmutz, M.; Candau, S. Langmuir 1999, 15, 2384.  

    20. [20]

      (20) Moroi, Y.; Matuura, R.; Kuwamura, T.; Inokuma, S. J. Colloid Interface Sci. 1986, 113, 225.  

    21. [21]

      (21) Moroi, Y.; Murata, Y.; Fukuda, Y.; Kido, Y.; Seto,W.; Tanaka, M. J. Phys. Chem. 1992, 96, 8610.  

    22. [22]

      (22) Moroi, Y.; Matuura, R.; Tanaka, M.; Murata, Y.; Aikawa, Y.; Furutani, E.; Kuwamura, T.; Takahashi, H.; Inokuma, S. J. Phys. Chem. 1990, 94, 842.  

    23. [23]

      (23) Yang, D. P.; Zhao, J. X. Colloids Surf. A submitted.  

    24. [24]

      (24) Nlshikldo, N.; Kobayashl, H.; Tanaka, M. J. Phys. Chem. 1982, 86, 3170.  

    25. [25]

      (25) Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci. 2007, 311, 276.  

    26. [26]

      (26) Pei, X. M.; Zhao, J. X.; Ye, Y. Z.; You, Y.;Wei, X. L. Soft Matter 2011, 7, 2953.  

    27. [27]

      (27) Pei, X. M.; Zhao, J. X.;Wei, X. L. J. Colloid Interface Sci. 2011, 356, 176.  

    28. [28]

      (28) Raghavan, S. R.; Kaler, E.W. Langmuir 2001, 17, 300.  

    29. [29]

      (29) Israelachvili, J. Intermolecular & Surface Forces Second Edition; Academic Press: San Die , 1992; pp 370-382.

    30. [30]

      (30) Alami, E.; Beinert, G.; Marie, P.; Zana, R. Langmuir 1993, 9, 1465.  

    31. [31]

      (31) Wettig, S. D.; Verrall, R. E. J. Colloid Interface Sci. 2001, 235, 310.  

    32. [32]

      (32) Tanford, C. J. Phys. Chem. 1972, 76, 3020.  

    33. [33]

      (33) Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758.  

    34. [34]

      (34) Cates, M. E. Macromolecules 1987, 20, 2289.  

    35. [35]

      (35) Khatory, A.; Lequeux, F.; Kern, F.; Candau, S. J. Langumir 1993, 9, 1456.  

    36. [36]

      (36) Oda, R.; Narayanan, J.; Hassan, P. A.; Manohar, C.; Salkar, R. A.; Kern, F.; Candau, S. J. Langmuir 1998, 14, 4364.  

    37. [37]

      (37) Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758.  

    38. [38]

      (38) Acharya, D. P.; Kunieda, H.; Shiba, Y.; Aratani, K. J. Phys. Chem. B 2004, 108, 1790.

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    13. [13]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(804)
  • Abstract views(2114)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return