Citation: SHI Ji-Fu, FAN Ye, XU Xue-Qing, XU Gang, CHEN Li-Hua. Influence of Preparation Conditions on the Properties of Cu2S Photocathodes[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 857-864. doi: 10.3866/PKU.WHXB201202204 shu

Influence of Preparation Conditions on the Properties of Cu2S Photocathodes

  • Received Date: 11 November 2011
    Available Online: 20 February 2012

    Fund Project: 国家自然科学基金(21103194, 21073193) (21103194, 21073193) 广州市珠江科技新星专项(2012061) (2012061)中国科学院广州能源研究所所长创新基金(y007r71001)资助项目 (y007r71001)

  • Cu2S nanomaterials were prepared, and the influence of preparation conditions on the morphology and catalytic reduction of sodium polysulfide was investigated. The Cu2S photocathode prepared under optimal conditions was used as a quantum-dot-sensitized solar cell. For preparation of the Cu2S photocathodes, HCl pretreatment and reaction with sodium polysulfide were important processes. The Cu2S photocathodes had petal-like structures composed of nano-plates. The Cu2S photocathodes become rough and porous, which increased the surface area, as the HCl concentration increased and pretreatment time was prolonged. As a result, interfacial charge transfer resistance between the Cu2S electrodes and polysulfide electrolyte decreased. Because the reaction between Cu and sodium polysulfide is very fast, the reaction time should be controlled. Otherwise, the Cu2S film will fracture. For od catalytic performance of the Cu2S photocathodes, the best preparation conditions were 30% HCl, pretreatment time for 40 min, and reaction with sodium polysulfide for 10 s. The quantum-dot-sensitized solar cell showed a high photoelectric conversion efficiency of 4.01%.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Pei, J.; Liang, M.; Chen, J.; Tao, Z.L.; Xu,W. Acta Phys. -Chim. Sin. 2008, 24, 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24, 1950.  

    3. [3]

      (3) Tao, L.; Yang, Y. Z.; Shi, C.;Wu, Y.;Wu, X. Acta Phys. -Chim. Sin. 2010, 26, 578. [桃李, 杨燕珍, 史成武, 吴玉程, 吴小燕. 物理化学学报, 2010, 26, 578.]

    4. [4]

      (4) Shi, J. F.; Xu, G.; Miao, L.; Xu, X. Q. Acta Phys. -Chim. Sin. 2011, 27, 1287. [史继富, 徐刚, 苗蕾, 徐雪青. 物理化学学报, 2011, 27, 1287.]

    5. [5]

      (5) Liao, J.Y.; Lei, B. X.;Wang, Y. F.; Liu, J. M.; Su, C. Y.; Kuang, D. B. Chem. Eur. J. 2011, 17, 1352.  

    6. [6]

      (6) Yu, Z.; Zhang, Q.; Qin, D.; Luo, Y.; Li, D.; Shen, Q.; Toyoda, T.; Meng, Q. Electrochem. Commun. 2010, 12, 1776.  

    7. [7]

      (7) Ruhle, S.; Shalom, M.; Zaban, A. ChemPhysChem 2010, 11, 2290.  

    8. [8]

      (8) Zhao, A. T.; Xiong, Y. L.; Zeng, H. P. Chem. J. Chin. Univ. 2011, 32, 1094. [赵爱婷, 熊艳玲, 曾和平. 高等学校化学学报, 2011, 32, 1094.]

    9. [9]

      (9) Zhang, Q. B.; Feng, Z. F.; Han, N. N.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2927. [张桥保, 冯增芳, 韩楠楠, 林玲玲, 周剑章, 林仲华. 物理化学学报, 2010, 26, 2927.]

    10. [10]

      (10) Lee, H.; Yum, J. H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S; A.; Chen, P.; Seok, S.; Grätzel, M. Nazeeruddin, M. K. J. Phys. Chem. C 2008, 112, 11600.  

    11. [11]

      (11) Pijpers, J. J. H.; Koole, R.; Evers,W. H.; Houtepen, A. J.; Boehme, S.; Donega, C. Vanmaekelbergh, D.; Bonn, M. J. Phys. Chem. C 2010, 114, 18866.  

    12. [12]

      (12) Chong, L.W.; Chien, H. T.; Lee, Y. L. J. Power Sources 2010, 195, 5109.  

    13. [13]

      (13) Chakrapani, V.; Baker, D.; Kamat, P. V. J. Am. Chem. Soc. 2011, 133, 9607.  

    14. [14]

      (14) Fuke, N.; Hoch, L. B.; Koposov, A. Y.; Manner, V.W.;Werder, D. J.; Fukui, A.; Koide, N.; Katayama, H.; Sykora, M. ACS Nano 2010, 4, 6377.  

    15. [15]

      (15) Deng, M.; Huang, S.; Zhang, Q.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Chem. Lett. 2010, 39, 1168.  

    16. [16]

      (16) Sudhagar, P.; Ramasamy, E.; Cho,W. H.; Lee, J.; Kang, Y. S. Electrochem. Commun. 2011, 13, 34

    17. [17]

      (17) Fan, S. Q.; Fang, B.; Kim, J. H.; Jeong, B.; Kim, C.; Yu, J. S.; Ko, J. Langmuir 2010, 26, 13644.  

    18. [18]

      (18) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604.  

    19. [19]

      (19) Zhang, Q.; Zhang, Y.; Huang, S.; Huang, X.; Luo, Y.; Meng, Q.; Li, D. Electrochem. Commun. 2010, 12, 327.  

    20. [20]

      (20) Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544.  

    21. [21]

      (21) Shi, J. F.;Wan, Q. C.; Xu, G.; Xu, X. Q.; Fan, Y. Acta Phys. -Chim. Sin. 2011, 27, 2360. [史继富, 万青翠, 徐刚, 徐雪青, 樊晔. 物理化学学报, 2011, 27, 2360.]

    22. [22]

      (22) nzalez-Pedro, V.; Xu, X.; Mora-Sero, I.; Bisquert, J. ACS Nano 2010, 4, 5783.  

    23. [23]

      (23) Lee, H. J.;Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Nano Lett. 2009, 9, 4221.  

    24. [24]

      (24) Li, Y. Southern Metals 2005, 14, 15. [李勇. 南方金属, 2005, 147, 15.]

    25. [25]

      (25) Peng, S.;Wu, Y.; Zhu, P.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishnac, S. J. Photochem. Photobiol. A:Chem. 2011, 223, 97.  

    26. [26]

      (26) Fabregat-Santia , F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2007, 111, 6550.  

  • 加载中
    1. [1]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    14. [14]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    17. [17]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

Metrics
  • PDF Downloads(1366)
  • Abstract views(2349)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return