Citation: ZHOU Dan-Na, CHEN Lin, WU Dan, ZHANG Li-Min. Photodissociation Spectra of OCS+ via A2ПX2П Transitions[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 963-970. doi: 10.3866/PKU.WHXB201202162 shu

Photodissociation Spectra of OCS+ via A2ПX2П Transitions

  • Received Date: 5 December 2011
    Available Online: 16 February 2012

    Fund Project: 国家自然科学基金(21073177)资助项目 (21073177)

  • In the wavelength range 260-325 nm, we obtained mass-resolved dissociation spectra of OCS+ via A2П3/2X2П3/2 (000) and A2П1/2X2П1/2 (000, 001) transitions by preparing OCS+ (X2П) ions via [3+1] resonance enhanced multiphoton ionization (REMPI) of OCS molecules at 423, 420, 412.2, and 408.4 nm. The mass-resolved dissociation spectra of OCS+ via A2П1/2X2П1/2 (001) were observed for the first time. The spectroscopic constants T0=31411.3 cm-1 and v1=814.3 cm-1 for the OCS+ (A2П3/2) state were deduced from the A2П3/2X2П3/2 (000) photodissociation spectra, and the spectroscopic constants v1=816 cm-1, v2=(380.4± 2.8) cm-1, and v3=(2052.7±5.1) cm-1 for the OCS+ (A2П1/2) state were deduced from the A2П1/2X2П1/2 (000) spectra. The spectroscopic constant v1=786.4 cm-1 was deduced from the A2П1/2X2П1/2 (001) photodissociation spectra. The results show that the C-O stretching mode excitation of X2П1/2 can affect the C-S stretching mode vibration of the A2П1/2 state via A2П1/2X2П1/2 (001) transitions. Bands involving the bending v2 mode excitation of A2П, such as A2П1/2 (020, 120, 021, …), were observed for the A2П1/2X2П1/2 (000, 001) transitions, but were not observed for the A2П3/21υ2υ3) ←X2П3/2 (000) transitions in the photodissociation spectra. The reason for this dependence of the bending v2 mode excitation of A2П on the spin-orbit splitting of the 2П state can be attributed to the Fermi resonance and Renner-Teller effect of OCS+ (A2П).
  • 加载中
    1. [1]

      (1) Hirst, D. M. Moleculer Physics 2006, 104, 55.  

    2. [2]

      (2) Chen, B. Z.; Huang, M. B.; Chang, H. B. Chem. Phys. Lett. 2005, 416, 107.  

    3. [3]

      (3) Hubin-Franskin, M. J.; Delwiche, J.; Guyon, P. M.; Richard- Viard, M.; Lavollee, M.; Dutuit, O.; Robbe, J. M.; Flament, J. P. Chem . Phys. 1996, 209, 143.  

    4. [4]

      (4) Frey, R.; tchev, B.; Peatman,W. B.; Pollak, H.; Schlag, E.W. Int. J. Mass Spectrom. Ion Phys. 1978, 26, 137.  

    5. [5]

      (5) Delwiche, J.; Hubin-Franskin, M. J.; Caprace, G.; Natalis, P.; Roy, D. J. Electron Spectrosc. Relat. Phenom. 1980, 21, 205.  

    6. [6]

      (6) Delwiche, J.; Hubin-Franskin, M. J.; Guyon, P. M.; Nenner, I. J. Chem. Phys. 1981, 74, 4219.  

    7. [7]

      (7) Stimson, S.; Evans, M.; Ng, C. Y.; Hsu, C.W.; Heimann, P.; Destandau, C.; Chambaud, G.; Rosmus, P. J. Chem. Phys. 1998, 108, 6205.  

    8. [8]

      (8) Chen,W.W.; Hochlaf, M.; Rosmus, P.; He, G. Z.; Ng, C. Y. J. Chem. Phys. 2002, 116, 5612.  

    9. [9]

      (9) Ono, Y.; Osuch, E. A.; Ng, C. Y. J. Chem. Phys. 1981, 74, 1645.  

    10. [10]

      (10) Ochsner, M.; Tsuji, M.; Maier, J. P. Chem. Phys. Lett. 1985, 115, 373.  

    11. [11]

      (11) Tsuji, M.; Maier, J. P. Chem. Phys. Lett. 1987, 137, 421.  

    12. [12]

      (12) Brundle, C. R.; Turner, D.W. Int. J. Mass Spectrosc. Ion Phys. 1969, 2, 195.  

    13. [13]

      (13) Kovac, B. J. Chem. Phys. 1983, 78, 1684.  

    14. [14]

      (14) Wang, L. S.; Reutt, J. E.; Lee, Y. T.; Shirley, D. A. J. Electron Spectrosc. Relat. Phenom. 1988, 47, 167.  

    15. [15]

      (15) Potts, A.W.; Fattahallah, G. H. J. Phys. B. 1980, 13, 2545.  

    16. [16]

      (16) Appling, J. R.; Harbol, M. R.; Edgington, R. A.; ren, A. C. J. Chem. Phys. 1992, 97, 4041.  

    17. [17]

      (17) Kakoschke, R.; Boesl, U.; Herman, J.; Schlag, E.W. Chem. Phys. Lett. 1985, 119, 467.  

    18. [18]

      (18) Morse, S.; Takahashi, M.; Eland, J. H. D.; Karlsson, L. Int. J. Mass Spectrom. 1999, 184, 67.  

    19. [19]

      (19) Yang, B.; Chiu, Y.; Fu, H.; Anderson, S. L. J. Chem. Phys. 1991, 95, 3275.  

    20. [20]

      (20) Weinkauf, R.; Boesl, U. J. Chem. Phys. 1992, 98, 4459.

    21. [21]

      (21) Morgan, R. A.; Orr-Ewing, A. J.; Ascenzi, D.; Michael, N. R. J. Chem. Phys. 1996, 105, 2141.  

    22. [22]

      (22) Morgan, R. A.; Baldwin, M. A.; Ascenzi, D.; Orr-Ewing, A. J.; Ashfold, M. N. R.; Buma,W. J.; Milan, J. B.; de Lange, C. A. Int. J. Mass Spectrom. Ion Phys. 1996, 159, 1.  

    23. [23]

      (23) Yang, B.; Mohamad, H. E.; Anderson, S. L. J. Chem. Phys. 1988, 89, 5527.  

    24. [24]

      (24) Chang, C.; Luo, C. Y.; Liu, K. J. Phys. Chem. A 2005, 109, 1022.  

    25. [25]

      (25) Wang, Z.; Zhang, L. M.; Li, J.;Wang, F.; Yu, Y. Q.; Zhang, J. L.; Yu, S. Q. Chin. J. Chem. Phys. 2003, 16, 89. [王仲, 张立敏, 李江, 王峰, 俞远琴, 张俊龙, 俞书勤. 化学物理学报, 2003, 16, 89.]

    26. [26]

      (26) Wang, Z.; Zhang, L. M.;Wang, F.; Li, J.; Yu, S. Q. Chin. Phys. Soc. 2003, 12, 3027. [王仲, 张立敏, 王峰, 李江, 俞书勤. 物理学报, 2003, 12, 3027.]

    27. [27]

      (27) Zhuang, X. J.; Zhang, L. M.;Wang, J .T.; Ma, Y. C.; Yu, S. Q. Chin. J. Chem. Phys. 2005, 18, 657. [庄秀娟, 张立敏, 王金婷, 马玉超, 俞书勤. 化学物理学报, 2005, 18, 657.]

    28. [28]

      (28) Weinkauf, R.; Boesl, U. J. Chem. Phys. 1994, 101, 8482.  

    29. [29]

      (29) Zhang, L.; Chen, J.; Xu, H.; Dai, J.; Liu, S.; Ma, X. J. Chem. Phys. 2001, 114, 10786.

    30. [30]

      (30) Sommavilla, M.; Merkt, F. J. Phys. Chem. A 2004, 108, 9970.  

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    12. [12]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    13. [13]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(556)
  • Abstract views(1941)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return