Citation: ZHOU Dan-Na, CHEN Lin, WU Dan, ZHANG Li-Min. Photodissociation Spectra of OCS+ via A2П←X2П Transitions[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 963-970. doi: 10.3866/PKU.WHXB201202162
-
In the wavelength range 260-325 nm, we obtained mass-resolved dissociation spectra of OCS+ via A2П3/2←X2П3/2 (000) and A2П1/2←X2П1/2 (000, 001) transitions by preparing OCS+ (X2П) ions via [3+1] resonance enhanced multiphoton ionization (REMPI) of OCS molecules at 423, 420, 412.2, and 408.4 nm. The mass-resolved dissociation spectra of OCS+ via A2П1/2←X2П1/2 (001) were observed for the first time. The spectroscopic constants T0=31411.3 cm-1 and v1=814.3 cm-1 for the OCS+ (A2П3/2) state were deduced from the A2П3/2←X2П3/2 (000) photodissociation spectra, and the spectroscopic constants v1=816 cm-1, v2=(380.4± 2.8) cm-1, and v3=(2052.7±5.1) cm-1 for the OCS+ (A2П1/2) state were deduced from the A2П1/2←X2П1/2 (000) spectra. The spectroscopic constant v1=786.4 cm-1 was deduced from the A2П1/2←X2П1/2 (001) photodissociation spectra. The results show that the C-O stretching mode excitation of X2П1/2 can affect the C-S stretching mode vibration of the A2П1/2 state via A2П1/2←X2П1/2 (001) transitions. Bands involving the bending v2 mode excitation of A2П, such as A2П1/2 (020, 120, 021, …), were observed for the A2П1/2←X2П1/2 (000, 001) transitions, but were not observed for the A2П3/2 (υ1υ2υ3) ←X2П3/2 (000) transitions in the photodissociation spectra. The reason for this dependence of the bending v2 mode excitation of A2П on the spin-orbit splitting of the 2П state can be attributed to the Fermi resonance and Renner-Teller effect of OCS+ (A2П).
-
- [1]
-
[2]
(2) Chen, B. Z.; Huang, M. B.; Chang, H. B. Chem. Phys. Lett. 2005, 416, 107.
-
[3]
(3) Hubin-Franskin, M. J.; Delwiche, J.; Guyon, P. M.; Richard- Viard, M.; Lavollee, M.; Dutuit, O.; Robbe, J. M.; Flament, J. P. Chem . Phys. 1996, 209, 143.
-
[4]
(4) Frey, R.; tchev, B.; Peatman,W. B.; Pollak, H.; Schlag, E.W. Int. J. Mass Spectrom. Ion Phys. 1978, 26, 137.
-
[5]
(5) Delwiche, J.; Hubin-Franskin, M. J.; Caprace, G.; Natalis, P.; Roy, D. J. Electron Spectrosc. Relat. Phenom. 1980, 21, 205.
-
[6]
(6) Delwiche, J.; Hubin-Franskin, M. J.; Guyon, P. M.; Nenner, I. J. Chem. Phys. 1981, 74, 4219.
-
[7]
(7) Stimson, S.; Evans, M.; Ng, C. Y.; Hsu, C.W.; Heimann, P.; Destandau, C.; Chambaud, G.; Rosmus, P. J. Chem. Phys. 1998, 108, 6205.
-
[8]
(8) Chen,W.W.; Hochlaf, M.; Rosmus, P.; He, G. Z.; Ng, C. Y. J. Chem. Phys. 2002, 116, 5612.
-
[9]
(9) Ono, Y.; Osuch, E. A.; Ng, C. Y. J. Chem. Phys. 1981, 74, 1645.
-
[10]
(10) Ochsner, M.; Tsuji, M.; Maier, J. P. Chem. Phys. Lett. 1985, 115, 373.
-
[11]
(11) Tsuji, M.; Maier, J. P. Chem. Phys. Lett. 1987, 137, 421.
-
[12]
(12) Brundle, C. R.; Turner, D.W. Int. J. Mass Spectrosc. Ion Phys. 1969, 2, 195.
- [13]
-
[14]
(14) Wang, L. S.; Reutt, J. E.; Lee, Y. T.; Shirley, D. A. J. Electron Spectrosc. Relat. Phenom. 1988, 47, 167.
-
[15]
(15) Potts, A.W.; Fattahallah, G. H. J. Phys. B. 1980, 13, 2545.
-
[16]
(16) Appling, J. R.; Harbol, M. R.; Edgington, R. A.; ren, A. C. J. Chem. Phys. 1992, 97, 4041.
-
[17]
(17) Kakoschke, R.; Boesl, U.; Herman, J.; Schlag, E.W. Chem. Phys. Lett. 1985, 119, 467.
-
[18]
(18) Morse, S.; Takahashi, M.; Eland, J. H. D.; Karlsson, L. Int. J. Mass Spectrom. 1999, 184, 67.
-
[19]
(19) Yang, B.; Chiu, Y.; Fu, H.; Anderson, S. L. J. Chem. Phys. 1991, 95, 3275.
-
[20]
(20) Weinkauf, R.; Boesl, U. J. Chem. Phys. 1992, 98, 4459.
-
[21]
(21) Morgan, R. A.; Orr-Ewing, A. J.; Ascenzi, D.; Michael, N. R. J. Chem. Phys. 1996, 105, 2141.
-
[22]
(22) Morgan, R. A.; Baldwin, M. A.; Ascenzi, D.; Orr-Ewing, A. J.; Ashfold, M. N. R.; Buma,W. J.; Milan, J. B.; de Lange, C. A. Int. J. Mass Spectrom. Ion Phys. 1996, 159, 1.
-
[23]
(23) Yang, B.; Mohamad, H. E.; Anderson, S. L. J. Chem. Phys. 1988, 89, 5527.
-
[24]
(24) Chang, C.; Luo, C. Y.; Liu, K. J. Phys. Chem. A 2005, 109, 1022.
-
[25]
(25) Wang, Z.; Zhang, L. M.; Li, J.;Wang, F.; Yu, Y. Q.; Zhang, J. L.; Yu, S. Q. Chin. J. Chem. Phys. 2003, 16, 89. [王仲, 张立敏, 李江, 王峰, 俞远琴, 张俊龙, 俞书勤. 化学物理学报, 2003, 16, 89.]
-
[26]
(26) Wang, Z.; Zhang, L. M.;Wang, F.; Li, J.; Yu, S. Q. Chin. Phys. Soc. 2003, 12, 3027. [王仲, 张立敏, 王峰, 李江, 俞书勤. 物理学报, 2003, 12, 3027.]
-
[27]
(27) Zhuang, X. J.; Zhang, L. M.;Wang, J .T.; Ma, Y. C.; Yu, S. Q. Chin. J. Chem. Phys. 2005, 18, 657. [庄秀娟, 张立敏, 王金婷, 马玉超, 俞书勤. 化学物理学报, 2005, 18, 657.]
-
[28]
(28) Weinkauf, R.; Boesl, U. J. Chem. Phys. 1994, 101, 8482.
-
[29]
(29) Zhang, L.; Chen, J.; Xu, H.; Dai, J.; Liu, S.; Ma, X. J. Chem. Phys. 2001, 114, 10786.
-
[30]
(30) Sommavilla, M.; Merkt, F. J. Phys. Chem. A 2004, 108, 9970.
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[3]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[4]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[5]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[6]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[7]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[8]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[9]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[10]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[11]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[12]
Yuhang Jiang , Weijie Liu , Jiaqi Cai , Jiayue Chen , Yanping Ren , Pingping Wu , Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054
-
[13]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[14]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[15]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[16]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[17]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[18]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[19]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[20]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[1]
Metrics
- PDF Downloads(556)
- Abstract views(1941)
- HTML views(5)