Citation: TANG Hong-Chang, ZHANG Chang-Hua, LI Ping, WANG Li-Dong, YE Bin, LI Xiang-Yuan. Experimental Study of Autoignition Characteristics of Kerosene[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 787-791. doi: 10.3866/PKU.WHXB201202161 shu

Experimental Study of Autoignition Characteristics of Kerosene

  • Received Date: 5 December 2011
    Available Online: 16 February 2012

    Fund Project: 国家自然科学基金(91016002)资助项目 (91016002)

  • The ignition delay times of gas-phase kerosene/air mixtures were measured behind reflected shock waves, using side-wall pressure and CH* emission measurements in a heated shock tube. The experiments were performed over the temperature range of 1100-1500 K, at pressures of 2.0×105 and 4.0× 105 Pa, and for equivalence ratios (Φ) of 0.2, 1.0, and 2.0. The effects of temperature, pressure, and equivalence ratio on the ignition delay time were investigated. The global activation energy for kerosene/air varies significantly when the equivalence ratio changes from 0.2 to 1.0, whereas the global activation energy at an equivalence ratio of 1.0 is almost the same as that at 2.0. Three correlations for the ignition delay time under three different equivalence ratios were deduced. The current data were compared with available kinetic mechanisms, and were found to be in od agreement with the predictions of Honnet et al. Chemical mechanism sensitivity analyses for different equivalence ratios were performed; the results showed that the ignition sensitivity at an equivalence ratio of 0.2 is quite different from those at 1.0 and 2.0.
  • 加载中
    1. [1]

      (1) Briker, Y.; Ring, Z.; Iacchelli, A.; McLean, N.; Rahimi, P. M.; Fairbridge, C. Energy Fuels 2001, 15, 23.  

    2. [2]

      (2) Powell, O. A.; Edwards, J. T.; Norris, R. B.; Numbers, K. E. J. Propul. Power 2001, 17, 1170.  

    3. [3]

      (3) Maurice, L. Q.; Lander, H.; Edwards, T.; Harrison,W. E., III. Fuel 2001, 80, 747.  

    4. [4]

      (4) A sta, A.; Cernansky, N. P.; Miller, D. L.; Faravelli, T.; Ranzi, E. Exp. Therm. Fluid Sci. 2004, 28, 701.  

    5. [5]

      (5) Curran, E. T. J. Propul. Power 2001, 17, 1138.  

    6. [6]

      (6) Vasu, S. S.; Davidson, D. F.; Hanson, R. K. Combust. Flame 2008, 152, 125.  

    7. [7]

      (7) Dagaut, P. Phys. Chem. Chem. Phys.2002, 4, 2079.

    8. [8]

      (8) Davidson, D. F.; Hanson, R. K. Int. J. Chem. Kinet. 2004, 36, 510.  

    9. [9]

      (9) Dean, A. J.; Penyazkov, O. G.; Sevruk, K. L.; Varatharajan, B. Proc. Combust. Inst. 2007, 31, 2481.  

    10. [10]

      (10) Kumar, K.; Sung, C. J. Combust. Flame 2010, 157, 676.  

    11. [11]

      (11) Davidson, D. F.; Horning, D. C.; Herbon, J.; Hanson, R. K. Proc. Combust. Inst. 2000, 28, 1687.  

    12. [12]

      (12) Zhang, Y. J.; Huang, Z. H.;Wang, J. H.; Xu, S. L. Chin. Sci. Bull. 2011, 56, 1399. [张英佳, 黄佐华, 王金华, 徐胜利. 科学通报, 2011, 56, 1399.]  

    13. [13]

      (13) Dagaut, P.; Cathonnet, M. Prog. Energy Combust. Sci. 2006, 32, 48.  

    14. [14]

      (14) Ranzi, E. available at: http: //www.chem.polimi.it/ CRECKModeling/html, 2006.

    15. [15]

      (15) Honnet, S.; Seshadri, K.; Niemann, U. Proc. Combust. Inst. 2009, 32, 485.  

    16. [16]

      (16) Davidson, D. F.; Gauthier,B. M.; Hanson, R. K. Proc. Combust. Inst. 2005, 30, 1175.  

    17. [17]

      (17) Shen, H. P. S.; Vanderover, J.; Oehlschlaeger, M. A. Proc. Combust. Inst. 2009, 32, 165.  

    18. [18]

      (18) Orme, J. P.; Curran, H. J.; Simmie, J. M. J. Phys. Chem. A 2006, 110, 114.  

    19. [19]

      (19) Vanderover, J.; Oehlschlaeger, M. A. Int. J. Chem. Kinet. 2009, 41, 82.  

    20. [20]

      (20) Benjamin, A. K.; Bergthorson, J. M. Energy Fuels 2010, 24, 396.  

    21. [21]

      (21) Oehlschlaeger, M. A.; Shen, H. P. S.; Frassoldati, A.; Pierucci, S.; Ranzi, E. Energy Fuels 2009, 23, 1464.  

    22. [22]

      (22) Shen, H. P. S.; Oehlschlaeger, M. A. Combust. Flame 2009, 156, 1053.  

    23. [23]

      (23) Bikas, G. Kinetic Mechanisms for Hydrocarbon Ignition; Doktor der Ingenieurwissenschaften thesis, available at http: // deposit.ddb.de/cgi-bin/dokserv?idn =964932857, RWTH Aachen University, Fakultät für Maschinenwesen, 2001.  

    24. [24]

      (24) Roubaud, A.; Minetti, R.; Sochet, L. R. Combust. Flame 2000, 121, 535.  

    25. [25]

      (25) Hua, X. X.;Wang, J. B.;Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim.Sin. 2011, 27, 2755. [华晓筱, 王静波, 王全德, 谈宁馨, 李象远. 物理化学学报, 2011, 27, 2755.]

    26. [26]

      (26) Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153, 343.  

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    20. [20]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

Metrics
  • PDF Downloads(708)
  • Abstract views(2307)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return