Citation: HUANG Ye, LIU Yu-Yang, LI Wen-Zhang, CHEN Qi-Yuan. Effects of Calcination Temperature on Morphologies and Photoelectrochemical Properties of Anodized WO3 Nanoporous Films[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 865-870. doi: 10.3866/PKU.WHXB201202152 shu

Effects of Calcination Temperature on Morphologies and Photoelectrochemical Properties of Anodized WO3 Nanoporous Films

  • Received Date: 2 December 2011
    Available Online: 15 February 2012

    Fund Project: 国家高技术研究发展计划项目(863) (2011AA050528) (863) (2011AA050528)国家自然科学基金(51072232, 21171175)资助 (51072232, 21171175)

  • Visible-light-responsive WO3 porous films were synthesized via step-voltage anodization in NH4F/(NH4)2SO4 solution and calcined at various temperatures. The crystalline phase and surface morphology were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The as-anodized nanoporous films converted to a monoclinic phase with preferential orientation in the (020) planes, and the pore diameters of the films calcined below 450 °C were estimated to be in the region of 50-100 nm. The photocatalytic activity was evaluated via photodegradation of methyl orange. The film calcined at 450 °C showed the highest photocatalytic activity. Photoelectrochemical measurements showed that the incident photon-to-current conversion efficiency (IPCE) values of the film calcined at 450 ° C were 87.4% at 340 nm and 22.1% at 400 nm. Under visible light (λ ≥400 nm), the photocurrent density in 0.5 mol·L-1 H2SO4 solution at 1.2 V (vs Ag/AgCl (KCl saturated)) was 5.11 mA·cm-2. Electrochemical impedance spectroscopy (EIS) measurements showed that the film calcined at 450 °C exhibited the smallest interface charge transfer resistance and optimal electroconductivity. Perfect crystallinity, high porosity and low resistance can therefore be obtained by controlling the calcination temperature. A large surface area and a porous structure are important factors in affecting photocatalytic activity.
  • 加载中
    1. [1]

      (1) Fujishima, A. Nature 1972, 238, 37.  

    2. [2]

      (2) Chang, X.; Sun, S.; Li, Z.; Xu, X.; Qiu, Y. Appl. Surf. Sci. 2011, 257, 5726.  

    3. [3]

      (3) Sayama, K.; Hayashi, H.; Arai, T.; Yanagida, M.; Gunji, T.; Sugihara, H. Appl. Catal. B-Environ. 2010, 94, 150.  

    4. [4]

      (4) Peng, F.; Chen, S. H.; Zhang, L.;Wang, H. J.; Xie, Z. Y. Acta Phys. -Chim. Sin. 2005, 21, 944. [彭峰, 陈水辉, 张雷, 王红娟, 谢志勇. 物理化学学报, 2005, 21, 944.]

    5. [5]

      (5) Ohno, T.; Tsubota, T.; Nakamura, Y.; Sayama, K. Appl. Catal. A: Gen. 2005, 288, 74.  

    6. [6]

      (6) Butler, M. J. Appl. Phys. 1977, 48, 19140.

    7. [7]

      (7) Chakrapani, V.; Thangala, J.; Sunkara, M. K. Int. J. Hydrog. Energy 2009, 34, 9050.  

    8. [8]

      (8) El-Basiouny, M.; Hassan, S.; Hefny, M. Corrosion Sci. 1980, 20, 909.  

    9. [9]

      (9) Cantalini, C.; Sun, H.; Faccio, M.; Pelino, M.; Santucci, S.; Lozzi, L.; Passacantando, M. Sensors Actuat. B-Chem. 1996, 31, 81.  

    10. [10]

      (10) Yan, A.; Xie, C.; Zeng, D.; Cai, S.; Hu, M. Mater. Res. Bull. 2010, 45, 1541.  

    11. [11]

      (11) Sun, X.; Liu, Z.; Cao, H. Thin Solid Films 2010,

    12. [12]

      (12) Zheng, H. J.;Wang, X. D.; Gu, Z. H. Acta Phys. -Chim. Sin. 2009, 25, 1650. [郑华均, 王醒东, 顾正海. 物理化学学报, 2009, 25, 1650.]

    13. [13]

      (13) Yang, B.; Li, H.; Blackford, M.; Luca, V. Curr. Appl. Phys. 2006, 6, 436.  

    14. [14]

      (14) Enesca, A.; Enache, C.; Duta, A.; Schoonman, J. J. Eur. Ceram. Soc. 2006, 26, 571.  

    15. [15]

      (15) Sun, Y.; Murphy, C. J.; Reyes-Gil, K. R.; Reyes-Garcia, E. A.; Thornton, J. M.; Morris, N. A.; Raftery, D. Int. J. Hydrog. Energy 2009, 34, 8476.  

    16. [16]

      (16) Djaoued, Y.; Priya, S.; Balaji, S. J. Non-Cryst. Solids 2008, 354, 673.  

    17. [17]

      (17) Tsuchiya, H.; Macak, J. M.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna, K.; Schmuki, P. Electrochem. Commun. 2005, 7, 295.  

    18. [18]

      (18) Li,W.; Li, J.;Wang, X.; Luo, S.; Xiao, J.; Chen, Q. Electrochim. Acta 2010, 56, 620.  

    19. [19]

      (19) Zheng, H.; Sadek, A. Z.; Latham, K.; Kalantar-Zadeh, K. Electrochem. Commun. 2009, 11, 768.  

    20. [20]

      (20) Lee,W.; Kim, D.; Lee, K.; Roy, P.; Schmuki, P. Electrochim. Acta 2010, 56, 828.  

    21. [21]

      (21) Nah, Y. C.; Indhumati, P.; Robert, H.; Nabeen K, S.; Patrik, S. Nanotechnology 2010, 21, 105704.  

    22. [22]

      (22) Yoriya, S.; Mor, G. K.; Sharma, S.; Grimes, C. A. J. Mater. Chem. 2008, 18, 3332.  

    23. [23]

      (23) Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3.  

    24. [24]

      (24) Paola, A. D.; Quarto, F. D.; Sunseri, C. Corrosion Sci. 1980, 20, 1067.  

    25. [25]

      (25) Daniel, M.; Desbat, B. J. Solid State Chem. 1987, 67, 235.  

    26. [26]

      (26) Guo, Y.; Quan, X.; Lu, N.; Zhao, H.; Chen, S. Environ. Sci. Technol. 2007, 41, 4422.  

    27. [27]

      (27) Pan, J. H.; Sun, D. D.; Lee, C.; Kim, Y. J.; Lee,W. I. J. Nanosci. Nanotechnol. 2010, 10, 4747.  

    28. [28]

      (28) Marin, F. I.; Hamstra, M. A.; Vanmaekelbergh, D. J. Electrochem. Soc. 1996, 143, 1137.  

    29. [29]

      (29) Kominami, H.; Kato, J.; Takada, Y.; Doushi, Y.; Ohtani, B.; Nishimoto, S.; Inoue, M.; Inui, T.; Kera, Y. Catal. Lett. 1997, 46, 2350.

    30. [30]

      (30) Hong, S. J.; Jun, H.; Borse, P. H.; Lee, J. S. Int. J. Hydrog. Energy 2009, 34, 3234.  

    31. [31]

      (31) ndal, M. A. H., A.; Yamani, Z.; Suwaiyan, A. Chem. Phys. Lett. 2004, 385, 111.  

    32. [32]

      (32) Liu, H.; Cheng, S.;Wu, M.;Wu, H.; Zhang, J.; Li,W.; Cao, C. J. Phys. Chem. A 2000, 104, 7016.  

    33. [33]

      (33) Parkinson, B. A.;Weaver, P. F. Nature 1984, 309, 148.  

    34. [34]

      (34) Kim, S. B.; Hong, S. C. Appl. Catal. B-Environ. 2002, 35, 305.  

    35. [35]

      (35) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C 2000, 1, 1.  

    36. [36]

      (36) Heller, A. Accounts Chem. Res. 1995, 28, 503.  

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    5. [5]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(867)
  • Abstract views(1820)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return