Citation: YAO Er-Gang, ZHAO Feng-Qi, GAO Hong-Xu, XU Si-Yu, HU Rong-Zu, HAO Hai-Xia, AN Ting, PEI Qing, XIAO Li-Bai. Thermal Behavior and Non-Isothermal Decomposition Reaction Kinetics of Aluminum Nanopowders Coated with an Oleic Acid/Hexogen Composite System[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 781-786. doi: 10.3866/PKU.WHXB201202151 shu

Thermal Behavior and Non-Isothermal Decomposition Reaction Kinetics of Aluminum Nanopowders Coated with an Oleic Acid/Hexogen Composite System

  • Received Date: 22 November 2011
    Available Online: 15 February 2012

    Fund Project: 国家自然科学基金(21173163) (21173163)燃烧与爆炸技术重点实验室基金(9140C3503141006)资助项目 (9140C3503141006)

  • Aluminum nanopowders (nmAl) coated with oleic acid (OA) were obtained under nitrogen atmosphere, and their surface morphologies and structures were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The thermal decomposition reaction kinetics of composite systems, nmAl/hexogen (RDX) and (nmAl + OA)/RDX, were investigated using differential scanning calorimetry (DSC). Their kinetic parameters and kinetic equations were obtained. The results showed that most of the OA adsorbed on the aluminum nanopowder surface by physical adsorption. Only a small amount of OA reacted with the surface aluminum atoms and adhered to the surface via chemical bonds. Compared with the nmAl/RDX composite, the peak temperatures for the (nmAl+OA)/RDX composite at multiple heating rates were lower. The apparent activation energy (Ea) and pre-exponential factor (A) of the main decomposition reaction were 141.18 kJ·mol-1 and 1012.57 s-1. The reaction mechanism fits a three-dimensional diffusion mechanism and obeys the Jander equation with n= 1/2. The kinetic equation can be expressed as: dα/dt=1013.35(1-α)2/3[1-(1-α)1/3]1/2e-16981.0/T.
  • 加载中
    1. [1]

      (1) Kwok, Q. S. M.; Fouchard, R. C.; Turcotte, A. M.; Lightfoot, P. D.; Bowes, R.; Jones, D. E. G. Propell. Explos. Pyrotech. 2002, 27 (4), 229.

    2. [2]

      (2) Hahma, A.; Gany, A.; Palovuori, K. Combust. Flame 2006, 145 (3), 464.  

    3. [3]

      (3) Cheng, Z. P.; Yang, Y.;Wang, Y.; Li, M. M.; Li, F. S. Acta Phys. -Chim. Sin. 2008, 24 (1), 152. [程志鹏, 杨毅, 王毅, 李苗苗, 李凤生. 物理化学学报, 2008, 24 (1), 152.]  

    4. [4]

      (4) Gany, A.; Caveny, L. H.; Summerfield, M. AIAA J. 1978, 16 (7), 736.

    5. [5]

      (5) Rashkovsky, S. A. Combust. Sci. Technol. 1998, 136 (1-6), 125.

    6. [6]

      (6) Babuk, V. A.; Vassiliev, V. A.; Sviridov, V. V. Combust. Sci. Technol. 2001, 163 (1), 261.  

    7. [7]

      (7) Rosenband, V.; Gany, A. Combust. Sci. Technol. 2001, 166 (1), 91.

    8. [8]

      (8) Zhao, F. Q.; Qin, G. M.; Cai, B. Y. Chin. J. Explos. Propell. 2001, 24 (4), 61. [赵凤起, 覃光明, 蔡炳源. 火炸药学报, 2001, 24 (4), 61.]

    9. [9]

      (9) Brousseau, P.; Anderson, C. J. Propell. Explos. Pyrotech. 2002, 27 (5), 300.  

    10. [10]

      (10) Mench, M. M. Combust. Sci. Technol. 1998, 135 (1-6), 269.

    11. [11]

      (11) Zhou, C.; Li, G. P.; Luo, Y. J. Chin. J. Explos. Propell. 2010, 33 (5), 1. [周超, 李国平, 罗运军. 火炸药学报, 2010, 33 (5), 1]

    12. [12]

      (12) gulya, M. F.; Makhov, M. N.; Brazhnikov, M. A.; Dol borodov, A. Y.; Arkhipov, V. I.; Zhigach, A. N.; Leipunskii, I. O.; Kuskov, M. L. Combust. Explo. Shock. 2008, 44 (2), 198.

    13. [13]

      (13) Gromov, A. A.; Förter-Barth, U.; Teipel, U. Powder Technol. 2006, 164 (2), 111.

    14. [14]

      (14) Gromov, A.; Пyin, A.; Förter-Barth, U.; Teipel, U. Propell., Explos., Pyrotechn 2006, 31 (5), 401.

    15. [15]

      (15) Chen, L.; Song,W. L.; Guo, L. G.; Xie, C. S. Trans. Nonferrous Met. Soc. China. 2009, 19 (1), 187.  

    16. [16]

      (16) Ramaswamy, A. L.; Kaste, P.; Trevino, S. F. J. Energ. Mater. 2004, 22 (1), 1.

    17. [17]

      (17) Kim, K. J. Met. Mater. Int. 2008, 14 (6), 707.

    18. [18]

      (18) Fernando, K. A. S.; Smith, M. J.; Harruff, B. A.; Lewis,W. K.; Guliants, E. A.; Bunker, C. E. J. Phys. Chem. C 2009, 113 (2), 500.  

    19. [19]

      (19) Jain, T. K.; Morales, M. A.; Leslie-Pelecky, S. K. S. L.; Labhasetwa, V. Mol. Pharm. 1995, 2 (3), 194.

    20. [20]

      (20) Jia, Z. F.; Xia, Y. Q. Tribol. Lett. 2011, 41 (2), 425.  

    21. [21]

      (21) Bunker, C. E.; Karnes, J. J. J. Am. Chem. Soc. 2004, 126 (35), 10852.

    22. [22]

      (22) Lewis,W. K.; Rosenberger, A. T.; rd, J. R.; Crouse, C. A.; Harruff, B. A.; Fernando, K. A. S.; Smith, M. J.; Phelps, D. K.; Spowart, J. E.; Guliants, E. A.; Bunker, C. E. J. Phys. Chem. C 2010, 114 (14), 6377.  

    23. [23]

      (23) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science: Beijing Press, 2008; pp 151-159. [胡荣祖, 高胜利, 赵凤起, 史启祯, 张同来, 张建军. 热分析动力学. 第二版. 北京: 科学出版社, 2008: 151-159.]

    24. [24]

      (24) Zhang, H.; Zhao, F. Q.; Yi, J. H.; Zhang, X. H.; Hu, R. Z.; Xu, S. Y.; Ren, X. N. Acta Phys. -Chim. Sin. 2008, 24 (12), 2263. [张衡, 赵凤起, 仪建华, 张晓宏, 胡荣祖, 徐司雨, 任晓宁. 物理化学学报, 2008, 24 (12), 2263.]  

    25. [25]

      (25) Xu, S. Y.; Zhao, F. Q.; Yi, J. H.; Hu, R. Z.; Gao, H. X.; Li, S. W.; Hao, H. X.; Pei, Q. Acta Phys. -Chim. Sin. 2008, 24 (8), 1371. [徐司雨, 赵凤起, 仪建华, 胡荣祖, 高红旭, 李上文, 郝海霞, 裴庆. 物理化学学报, 2008, 24 (8), 137.]  

    26. [26]

      (26) An, T.; Zhao, F. Q.; Yi, J. H.; Fan, X. Z.; Gao, H. X.; Hao, H. X.;Wang, X. H.; Hu, R. Z.; Pei, Q. Acta Phys. -Chim. Sin. 2011, 27 (2), 281. [安亭, 赵凤起, 仪建华, 樊学忠, 高红旭, 郝海霞, 王晓红, 胡荣祖, 裴庆. 物理化学学报, 2011, 27 (2), 281.]  

    27. [27]

      (27) Liang, L.;Wang, J. Y.; Dong, J.; An, C.W. Chin. J. Explos. Propell. 2009, 32 (6), 75. [梁磊, 王晶禹, 董军, 安崇伟. 火炸药学报, 2009, 32 (6), 75.]

  • 加载中
    1. [1]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    2. [2]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    3. [3]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    4. [4]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    5. [5]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    6. [6]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    7. [7]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    8. [8]

      Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    11. [11]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    12. [12]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    13. [13]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

Metrics
  • PDF Downloads(886)
  • Abstract views(1997)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return