Citation: WU Shao-Gui, SUN Ting, ZHOU Ping, ZHOU Jun. Simulating Patterned Structures in Block Copolymer Nanodroplets Using Explicit Solvent Model[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 978-984. doi: 10.3866/PKU.WHXB201202142 shu

Simulating Patterned Structures in Block Copolymer Nanodroplets Using Explicit Solvent Model

  • Received Date: 15 November 2011
    Available Online: 14 February 2012

    Fund Project: 四川省应用基础项目(2010JY0122) (2010JY0122) 四川师范大学校级面上项目(10MSL02) (10MSL02)

  • Dissipative particle dynamics (DPD) simulation technique is used to elucidate the microphase separation behavior of block copolymers in nanodroplets. The simulation is performed by relaxing disordered copolymer nanodroplets in a solvent bath. Microphase separation is then carried out inside the nanodroplet, which allows block copolymers self-assemble into many new morphologies differing from those formed in pure melts or in solution. These patterned structures depend on the volume ratio of solvophilic/solvophobic blocks (RH/T). As the value of RH/T increases, the following structures are formed: plum-pudding microsphere, volleyball-like structure, multilamellar vesicle, cage-like structure, nanorods, and discrete micelles. Density analysis is performed to characterize the onion's structure. At high RH/T values, block copolymers exhibit mainly solvophilicity and form swollen loose structures or small micelles suspended in the solvent. The simulation results are in od agreement with experimental and theoretical results.
  • 加载中
    1. [1]

      (1) Li, Z.; Dormidontova, E. E. Macromolecules 2010, 43, 3521.  

    2. [2]

      (2) Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun. 2009, 30, 267.  

    3. [3]

      (3) Ruiz, R.; Kang, H.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Science 2008, 321, 936.  

    4. [4]

      (4) Wan, D. H.; Zheng, O.; Zhou, Y.;Wu, L. Y. Acta Phys. -Chim. Sin. 2010, 26, 3243. [万东华, 郑欧, 周燕, 吴莉瑜. 物理化学学报, 2010, 26, 3243.]

    5. [5]

      (5) Matsui, H.; Okada, A.; Yoshihara, M. J. Mater. Sci. Lett. 2001, 20, 1151.  

    6. [6]

      (6) Roy, S.; Markova, D.; Kumar, A.; Klapper, M.; Muller-Plathe, F. Macromolecules 2009, 42, 841.  

    7. [7]

      (7) Wang, H.; Liu, Y. T.; Qian, H. J.; Lu, Z. Y. Polymer 2011.  

    8. [8]

      (8) Li, X.; Guo, J.; Liu, Y.; Liang, H. J. Chem. Phys. 2009, 130, 074908.  

    9. [9]

      (9) Chen,W. X.; Fan, X. D.; Huang, Y.; Liu, Y. Y.; Sun, L. React. Polym. 2009, 69, 97.  

    10. [10]

      (10) Groot, R. D.; Madden, T. J. J. Chem. Phys. 1998, 108, 8713.  

    11. [11]

      (11) Markvoort, A.; Pieterse, K.; Steijaert, M.; Spijker, P.; Hilbers, P. J. Phys. Chem. B 2005, 109, 22649.  

    12. [12]

      (12) Sevink, G.; Zvelindovsky, A. Macromolecules 2005, 38, 7502.  

    13. [13]

      (13) Fraaije, J.; Sevink, G. Macromolecules 2003, 36, 7891.  

    14. [14]

      (14) Ganzenmüller, G.; Hiermaier, S.; Steinhauser, M. Soft Matter 2011, 7, 4307.  

    15. [15]

      (15) Li, Z.; Dormidontova, E. E. Soft Matter 2011, 7, 4179.  

    16. [16]

      (16) Koelman, J.; Hoogerbrugge, P. J. Europhys lett. 1993, 21, 363.  

    17. [17]

      (17) Shillcock, J. C.; Lipowsky, R. J. Chem. Phys. 2002, 117, 5048.  

    18. [18]

      (18) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.  

    19. [19]

      (19) Venturoli, M.; Smit, B.; Sperotto, M. M. Biophys. J. 2005, 88, 1778.  

    20. [20]

      (20) Markvoort, A. J.; Pieterse, K.; Steijaert, M. N.; Spijker, P.; Hilbers, P. A. J. J. Phys. Chem. B 2005, 109, 22649.  

    21. [21]

      (21) Wu, S.; Guo, H. J. Phys. Chem. B 2008, 113, 589.

    22. [22]

      (22) Yamamoto, S.; Maruyama, Y.; Hyodo, S. J. Chem. Phys. 2002, 116, 5842.  

    23. [23]

      (23) Yamamoto, S.; Hyodo, S. A. J. Chem. Phys. 2003, 118, 7937.  

    24. [24]

      (24) Kranenburg, M.; Venturoli, M.; Smit, B. Phys. Rev. E 2003, 67, 060901.  

    25. [25]

      (25) Van der Linden, E.; Hogervorst,W. T.; Lekkerkerker, H. N.W. Langmuir 1996, 12, 3127.  

    26. [26]

      (26) El Rassy, H.; Belamie, E.; Livage, J.; Coradin, T. Langmuir 2005, 21, 8584.  

    27. [27]

      (27) Rapaport, D. C. The art of molecular dynamics simulation; Cambridge Univ Pr, 2004.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    12. [12]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(866)
  • Abstract views(2199)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return