Citation: CHEN Xu-Hai, LIU Shao-Li, CHEN Jing-Hua, DU Min, LIN Xin-Hua. Numerical Simulation Based Accurate Models of Improved Chronoamperometry and Its Experimental Validation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 877-884. doi: 10.3866/PKU.WHXB201202141 shu

Numerical Simulation Based Accurate Models of Improved Chronoamperometry and Its Experimental Validation

  • Received Date: 7 December 2011
    Available Online: 14 February 2012

    Fund Project: 国家高技术研究发展规划项目(863) (2008AA02Z433) (863) (2008AA02Z433) 国家自然科学基金(21105012) (21105012) 福建省科技计划项目(2010I0017) (2010I0017) 福建省高校杰出青年科研人才培育计划(JA11105) (JA11105)福建省自然科学基金(2011J01028)资助 (2011J01028)

  • Based on the empirical formula for concentration change of a detected molecule on the surface of a electrode, an approximate mathematical model of improved chronoamperometry was established. The relationship between the working current and detection reagent concentration was analyzed qualitatively. Parameters for the electrode reaction and excitation potential were not included. To solve this problem, the Nernst equation and Fick's law were applied to construct an integral equation for the specific concentrations of the oxidant and reductant on the surface of the electrode. The current-time curve obtained numerically was used to investigate the relationship between the peak current and concentration of reagent, inertia time constant, standard potential of the reference electrode, initial value and steady state value of the voltage excitation. Using the improved chronoamperometry device, we studied the electrochemical behavior of K3[Fe(CN)6]. The experimental results showed that the simulation results from the numerical model were much closer to the actual situation than the empirical model. The experimental results also confirmed the parameter relationships that were derived using the model.
  • 加载中
    1. [1]

      (1) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Chemical Industry Press: Beijing, 2005; pp 111-112; translated by Shao, Y. H., Zhu, G. Y., Dong, X. D., Zhang, B. L. [Bard, A. J.; Faulkner, L. R. 电化学方法—原理和应用. 邵元华, 朱果逸, 董献堆, 张柏林, 译. 北京: 化学工业出版社, 2005: 111-112.]

    2. [2]

      (2) Hu, H. L.; Li, N. Electrochemical Measurement; National Defense Industry: Beijing, 2007; pp 147-153. [胡会利, 李宁. 电化学测量. 北京: 国防工业出版社, 2007: 147-153.]

    3. [3]

      (3) Cheng, H. Y.; McCreery, R. L. J. Electroanal. Chem. 1977, 85, 361.  

    4. [4]

      (4) Dian, G.; Huguet, J.; Caullet, C. J. Electroanal. Chem. 1978, 88, 282.

    5. [5]

      (5) Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys . -Chim. Sin. 2010, 26, 1779. [戈芳, 曹瑞国, 朱斌, 李经建, 徐东升. 物理化学学报, 2010, 26, 1779.]

    6. [6]

      (6) Nishiumi, T.; Abdul, M. M.; Aoki, K. Electrochem. Commun. 2005, 7, 1213.  

    7. [7]

      (7) Daws, L. C.; Montanez, S.; Owens,W. A.; uld, G. G.; Frazer, A.; Toney, G. M.; Gerhardt, G. A. J. Neurosci. Meth. 2005, 143, 49.  

    8. [8]

      (8) Perez, X. A.; Andrews, A. M. Anal. Chem. 2005, 77, 818.  

    9. [9]

      (9) Yang, Y.; Liu, G.; Liu, H. J.; Li, D.; Fan, C. H.; Liu, D. S. Nano Lett. 2010, 10, 1393.  

    10. [10]

      (10) Wilson, M. S.; Nie,W. Y. Anal. Chem. 2006, 78, 2507.  

    11. [11]

      (11) Moser, I.; Jobst, G.; Urban, G. A. Biosens. Bioelectron. 2002, 17, 297.  

    12. [12]

      (12) Yun, Y. H.; Dong, Z. Y.; Shanov, V. N.; Doepke, A.; Heineman, W. R.; Halsall, H. B.; Bhattacharya, A.;Wong, D. K. Y.; Schulz, M. J. Sens. Actuators B 2008, 133, 208.  

    13. [13]

      (13) Liu, G.;Wan, Y.; Gau, V.; Zhang, J.;Wang, L. H.; Song, S. P.; Fan, C. H. J. Am. Chem. Soc. 2008, 130, 6820.  

    14. [14]

      (14) Wang, K.; Chen, J. H.; Chen, J.; Liu, A.; Li, G.W.; Luo, H. B.; Lin, X. H.; Chen, Y. Z. Electroanalysis 2009, 21, 1159.  

    15. [15]

      (15) Wei, F.;Wang, J. H.; Liao,W.; Zimmermann, B. G.;Wong, D. T.; Ho, C. M. Nucleic Acids Res. 2008, 36, e65.  

    16. [16]

      (16) Klymenko, O. V.; Evans, R. G.; Hardacre, C.; Svir, I. B.; Compton, R. G. J. Electroanal. Chem. 2004, 571, 219.

    17. [17]

      (17) Wang, Y. J.; Rogers, E. I.; Compton, R. G. J. Electroanal. Chem. 2010, 648, 18.

    18. [18]

      (18) Chen, X. H.; Chen, J. H.; Pan, H. B.; Li, Y. R.; Du, M.; Lin, X. H. Acta Phys. -Chim. Sin. 2010, 26, 2920. [陈旭海, 陈敬华, 潘海波, 李玉榕, 杜民, 林新华. 物理化学学报, 2010, 26, 2920.]

    19. [19]

      (19) Cottrell, F. G. Z. Phys. Chem. 1902, 42, 385.

    20. [20]

      (20) Alexander, C. K.; Sadiku, M. N. O. Fundamentals of Electric Circuits, 3rd ed; Posts & Telecom Press: Beijing, 2009; pp 231-234; translated by Guan, X., Song, X.W., Yang, L., Yang, A. P. [Alexander, C. K.; Sadiku, M. N. O. 电路基础. 关欣, 宋晓炜, 杨蕾, 杨爱萍, 译. 北京: 人民邮电出版社, 2009: 231-234.]  

    21. [21]

      (21) Fick, A. Poggendorff' s Ann. Physik. 1855, 94, 59.

    22. [22]

      (22) Zhao, Y. T.;Wang, Y.; Guo, X. P.; Li, H. H. Acta Phys. -Chim. Sin. 2005, 21, 544. [赵永韬, 王昱, 郭兴蓬, 李海洪. 物理化学学报, 2005, 21, 544.]

    23. [23]

      (23) Oppenheim, A. V.;Willsky, A. S.; Nawab, S. H. Signals & Systems, 2nd ed.; Xi'an Jiaotong University Press: Xi'an, 1998; p 495; translated by Liu, S. T. [Oppenheim, A. V.;Willsky, A. S.; Nawab, S. H. 信号与系统. 刘树棠, 译. 西安: 西安交通大学出版社, 1998: 495.]  

    24. [24]

      (24) Song, J. L.; Xu, C. Journal of Xidian University 2004, 31, 968. [宋巨龙, 徐晨. 西安电子科技大学学报, 2004, 31, 968.]

    25. [25]

      (25) Sawyer, D. T.; Roberts, J. L. Experimental Electrochemistry for Chemists; JohnWiley & Sons: New York, 1974; p 332.

  • 加载中
    1. [1]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    2. [2]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    3. [3]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    6. [6]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    7. [7]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    13. [13]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    19. [19]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    20. [20]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

Metrics
  • PDF Downloads(777)
  • Abstract views(1728)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return