Citation: WANG Wen-Qing, SHEN Xin-Chun, WU Ji-Lan, NG Yan, SHEN Guo-Hua, ZHAO Hong-Kai. Heat Capacity and DC-Magnetic Susceptibility Evidence for the Asymmetry of Electron Spin-Flip Phase Transition of N+H…O- Bond in Chiral Alanine Crystal[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 773-780. doi: 10.3866/PKU.WHXB201202132 shu

Heat Capacity and DC-Magnetic Susceptibility Evidence for the Asymmetry of Electron Spin-Flip Phase Transition of N+H…O- Bond in Chiral Alanine Crystal

  • Received Date: 31 October 2011
    Available Online: 13 February 2012

    Fund Project: 国家自然科学基金(21002006, 20452002) (21002006, 20452002)国家科技部基础研究重大项目(2004-973-36)资助 (2004-973-36)

  • With a view to understanding the argument of phase-transition mechanisms of D- and L-alanine at around 270 K, the temperature dependence of heat capacity measurements was investigated, for single crystals, ground powders, and polycrystalline products, using differential scanning calorimetry (DSC). The Cp (heat capacity under constant pressure) values of D- and L-alanine were calibrated with standard sapphire by the triple-curve method; these values coincide with the standard Cp values in the literature. Endothermic transition peaks were observed at Tc=272.02 K, ΔH=1.87 J·mol-1 and Tc=271.85 K, ΔH=1.46 J·mol-1 for D- and L- alanine, respectively, and Tc=273.59 K, ΔH=1.75 J·mol-1 and Tc=273.76 K, ΔH=1.57 J·mol-1 for the reference crystals D- and L-valine, respectively. The energy differences of 0.41 J· mol-1 for D-and L-alanine and 0.18 J·mol-1 for D- and L-valine, which were observed from pre-aligned molecules in the single crystals and vanished in the ground powders and polycrystalline products, show that the phase transition is related to the crystal lattice. Neutron diffraction results exclude the possibility of a D→L configuration change, and show that the hydrogen bonds run antiparallel to the c-axis in the D- and Lcrystals. Polarized Raman vibrational spectroscopy shows that the transition mechanism may be related to the electronic orbital angular momentum and magnetic dipole moments of N+H…O- in the crystals. External magnetic fields, H=+1, -1 T, were applied parallel to the c(z)-axis of the D- and L-alanine crystalline lattices, respectively. The DC-magnetic susceptibilities show electron spin-flip transitions at around 270 K in D- and L-alanine. The spin is“up”or“down”relative to the direction of N+H…O- bond along the c(z)-axis. Based on spin rigidity and magnetic anisotropy, the results help to explain the discrepancies among heat capacity and magnetic susceptibility data for single crystals and polycrystalline powders of D- and L-alanine.
  • 加载中
    1. [1]

      (1) MacDermott, A. J. Enantiomer 2000, 5, 153.

    2. [2]

      (2) MacDermott, A. J.; Hegstrom, R. A. Chemical Physics 2004, 305, 55.  

    3. [3]

      (3) Simpson, H. J.; Marsh, R. E. Acta Cryst. 1966, 20, 550.  

    4. [4]

      (4) Destro, R.; Marsh, R. E. J. Phys. Chem. 1988, 92, 966.  

    5. [5]

      (5) Crowell, R. A.; Chronister, E. L. Phys. Rev. B 1993, 48, 172.  

    6. [6]

      (6) Kosic T. J.; Raymond, E. C., Jr. Chem. Phys. Lett. 1983, 103, 109.  

    7. [7]

      (7) Gledhill, M. Analyst 2001, 126, 1359.  

    8. [8]

      (8) Cronin J. R.; Pizzarello, S. Science 1997, 275, 951.  

    9. [9]

      (9) Wang,W. Q.; ng, Y.; Liang, Z.; Sun, F. L.; Shi, D. X.; Gao, H. J.;Wang, Z. M. Surface Science 2002, 512, L379.

    10. [10]

      (10) Perkin-Elmer Corporation, Thermal Analysis Instrument Division, Shanghai, 2008

    11. [11]

      (11) Mraw, S. C. Rev. Sci. Instrum. 1982, 53, 228.  

    12. [12]

      (12) Pak, J.; Qiu,W.; Pyda, M.; Nowak-Pyda, E.;Wunderlic, B. J. Therm. Anal. Cal. 2005, 82, 565.  

    13. [13]

      (13) Morad, N. A.; Idrees, M.; Hasan, A. A. J. Therm. Anal. 1995, 44, 823.  

    14. [14]

      (14) (a) Hutchens, J. O.; Cole, A. G.; Stout, J.W. J. Am. Chem. Soc. 1960, 82, 4813. (b) Handbook of Biochemistry and Molecular Biology V.4; Physical and Chemical data, CRC Press: Cleveland, 1976.  

    15. [15]

      (15) Huffman, H. M.; Borsook, H. J. Am. Chem. Soc. 1932, 54, 4297. Handbook of Biochemistry and Molecular Biology V. 4; Physical and Chemical data, CRC Press: Cleveland, 1976.  

    16. [16]

      (16) Wilson, C. C.; Myles, D.; Ghosh, M.; Johnson, L. N.;Wang,W. Q. New J. Chem. 2005, 29, 1318.  

    17. [17]

      (17) Wang,W. Q.; Liu, Y. N.; ng, Y. Acta Phys. -Chim. Sin. 2004, 20, 1345. [王文清, 刘轶男, 龚. 物理化学学报, 2004, 20, 1345.]

    18. [18]

      (18) Wang,W. Q.; ng, Y.; Yao, N. Acta Phys. -Chim. Sin. 2005, 21, 774. [王文清, 龚, 姚楠. 物理化学学报, 2005, 21, 774.]

    19. [19]

      (19) Forss, S. A. J. Raman Spec. 1982, 12, 266.  

    20. [20]

      (20) Sullivan, R.; Pyda, M.; Pak, J.;Wunderlich, B.; Thompson, J. R.; Pagni, R.; Pan, H. J.; Barnes, C.; Schwerdtfeger, P.; Compton, R. J. Phys. Chem. 2003, 107, 6674.  

    21. [21]

      (21) Hutchens, J. O.; Cole, A. G.; Stout, J.W. J. Phys. Chem. 1963, 67, 1128. Handbook of Biochemistry and Molecular Biology V. 4; Physical and Chemical data, CRC Press: Cleveland, 1976.  

    22. [22]

      (22) Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particlesm, 2nd ed. JohnWiley & Sons: 1985; p 432.

    23. [23]

      (23) Barron, L. D.; Buckingham, A. D. Accounts Chem. Res. 2001, 34, 785.

    24. [24]

      (24) Ray, K.; Ananthavel, S. P.;Waldeck, D. H.; Naaman, R. Science 1999, 283, 814.  

    25. [25]

      (25) ng, Y. Ph. D. Dissertation, Peking University, Beijing, 2006.

    26. [26]

      (26) Compton, R. N.; Pagni, R. M. Adv. At. Mol. Opt. Phy. 2002, 48, 219.

    27. [27]

      (27) Barron, L. D. Space Sci. Rev. 2008, 135, 187.  

    28. [28]

      (28) Lorenzo, J. E.; Boullier, C.; Regnault, L. P.; Ammerahl, U.; Revcolevschi, A. Phys. Rev. B 2007, 75, 054418.  

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    3. [3]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Fei Xie Shichong Yu Ting Wang Yongsheng Jin Dazhi Zhang Yumeng Hao . Practice and Exploration of O-PIRTAS Flipped Classroom in Organic Chemistry Course. University Chemistry, 2024, 39(4): 238-243. doi: 10.3866/PKU.DXHX202310055

    7. [7]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    13. [13]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    14. [14]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    15. [15]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    16. [16]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    17. [17]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    18. [18]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(628)
  • Abstract views(1797)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return