Citation: WU Hai-Fei, WU Ke, ZHANG Han-Jie, LIAO Qing, HE Pi-Mo. Oxidation and Oxygen Thermal Desorption Mechanism on Narrow-Gap IV-VI Semiconductor PbTe(111) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1252-1256. doi: 10.3866/PKU.WHXB201202131 shu

Oxidation and Oxygen Thermal Desorption Mechanism on Narrow-Gap IV-VI Semiconductor PbTe(111) Surface

  • Received Date: 30 November 2011
    Available Online: 13 February 2012

    Fund Project: 国家自然科学基金(60506019, 10674118, 10774129)资助项目 (60506019, 10674118, 10774129)

  • Oxidation and thermal desorption mechanism on the PbTe(111) surface were investigated using X-ray photoemission spectroscopy (XPS), scanning tunneling microscopy (STM), and low-energyelectron diffraction (LEED). The initial cleaning of the surface by 500 VAr+ sputtering followed by annealing at 250 °C yielded a perfect (1×1) PbTe(111) surface. XPS measurements showed that PbO2, PbO, and TeO2 were present at the PbTe(111) surface after air exposure for 2 days, and the intensity ratio of Te 3d5/2 and Pb 4f7/2 increased rapidly compared to that of the clean PbTe(111) surface, indicating Te depletion and Pb enrichment of the surface. XPS and STM measurements showed that the thickness of the oxide layer was more than 2 monolayers (MLs). During thermal treatment, the core levels of PbO2 and TeO2 disappeared and the intensity of the O 1s core level decreased, indicating surface decomposition of PbO2 and TeO2, and desorption of oxygen, whereas PbO was still present on the surface after annealing at up to 350 °C.
  • 加载中
    1. [1]

      (1) Chen, Y.; Chen, J. H.; Guo, J. Acta Phys. -Chim. Sin. 2011, 27, 363. [陈晔, 陈建华, 郭进. 物理化学学报, 2011, 27, 363.]

    2. [2]

      (2) Kong, D. S.; Li, L. Acta Phys. -Chim. Sin. 2004, 20, 631. [孔德生, 李亮. 物理化学学报, 2004, 20, 631.]

    3. [3]

      (3) Cao, Y.; Li, A. Z. Acta Phys. -Chim. Sin. 1996, 12, 224. [曹阳, 李爱珍. 物理化学学报, 1996, 12, 224.]

    4. [4]

      (4) Wu, T. F.; Zhang, H. M.;Wang, G. Y.; Hu, H. Y. Acta Phys. Sin. 2011, 60, 631. [吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 物理学报, 2011, 60, 631.]

    5. [5]

      (5) Moré, S.; Tanakab, S.; Tanakaa, S.; Fujii, Y. Surface Science 2003, 527, 41.  

    6. [6]

      (6) Lin, H. Y.;Wu, S. L.; Cheng, C. C.; Ko, C. H.;Wann, C. H.; Lin, Y. R.; Chang, S. J.;Wu, T. B. Appl. Phys. Lett. 2011, 98, 123509.  

    7. [7]

      (7) Gautier, C.; Cambon-Muller, M.; Averous, M. Applied Surface Science 1999, 141, 157.  

    8. [8]

      (8) Neudachina, V. S.; Shatalova, T. B.; Shtanov, V. I.; Yashina, L. V.; Zyubina, T. S.; Tamm, M. E.; Kobeleva, S. P. Surface Science 2005, 584, 77.  

    9. [9]

      (9) Radzy´nski, T.; Lusakowski, A. Acta Phys. Pol. A 2009, 116, 954.

    10. [10]

      (10) Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H. Appl. Phys. Lett. 2011, 99, 121109.  

    11. [11]

      (11) Paul, A.; Klimeck, G. Appl. Phys. Lett. 2011, 98, 212105.  

    12. [12]

      (12) Weng, B. B.; Zhao, F. H.; Ma, J. G.; Yu, G. Z.; Xu, J. A.; Shi, Z. S. Appl. Phys. Lett. 2010, 96, 251911.  

    13. [13]

      (13) Kilian, O.; Allan, G.;Wirtz, L. Phys. Rev. B 2009, 80, 245208.  

    14. [14]

      (14) Zhang, Y.; Ke, X. Z.; Chen, C. F.; Yang, J.; Kent, P. R. C. Phys. Rev. B 2009, 80, 024304.  

    15. [15]

      (15) Brodsky, M. H.; Zemel, J. N. Phys. Rev. 1967, 155, 780.  

    16. [16]

      (16) Parker, E. H. C.;Williams, D. Thin Solid Films 1976, 35, 373.  

    17. [17]

      (17) Chernyashova, I. V.; Andreev, S. I. Applied Surface Science 1997, 108, 225.  

    18. [18]

      (18) Zingg, D. S.; Herlules, D. M. J. Phys. Chem. 1978, 82, 1992.  

    19. [19]

      (19) Dai, G.; Jiang, X.; Zhang, Y. Thin Solid Films 1998, 320, 216.  

    20. [20]

      (20) Bettini, M.; Richter, H. J. Surface Science 1979, 80, 334.  

    21. [21]

      (21) Wu, H. F.; Zhang, H. J.; Lu, Y. H.; Si, J. X.; Li, H. Y.; Bao, S. N.;Wu, H. Z.; He, P. M. Appl. Phys. Lett. 2008, 92, 122112.  

    22. [22]

      (22) Wu, H. F.; Zhang, H. J.; Lu, Y. H.; Xu, T. N.; Si, J. X.; Li, H. Y.; Bao, S. N.;Wu, H. Z.; He, P. M. J. Crystal Growth 2006, 294, 179.  

    23. [23]

      (23) Shalloy, R. B.; Fisher, G. B.; Stiles, P. J. Phys. Rev. B 1977, 5, 1680.

    24. [24]

      (24) Morgan,W. E.; vanWazer, J. R. J. Phys. Chem. 1973, 77, 964.  

    25. [25]

      (25) Kim, K. S.; O?leary, T. J.;Winograd, N. Anal. Chem. 1973, 13, 2214.

    26. [26]

      (26) Kim, K. S.;Winograd, N. Chem. Phys. Lett. 1973, 19, 209.  

    27. [27]

      (27) Yashina, L. V.; Tikhonov, E. V.; Neudachina, V. S. Surf. Interface Anal. 2004, 36, 993.  

    28. [28]

      (28) Northrop, D. A. J. Electrochem. Soc. 1971, 118, 1365.  

  • 加载中
    1. [1]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    5. [5]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    6. [6]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    7. [7]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    8. [8]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    12. [12]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    13. [13]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    14. [14]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    19. [19]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    20. [20]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

Metrics
  • PDF Downloads(921)
  • Abstract views(2419)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return