Citation: WU Hai-Fei, WU Ke, ZHANG Han-Jie, LIAO Qing, HE Pi-Mo. Oxidation and Oxygen Thermal Desorption Mechanism on Narrow-Gap IV-VI Semiconductor PbTe(111) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1252-1256. doi: 10.3866/PKU.WHXB201202131 shu

Oxidation and Oxygen Thermal Desorption Mechanism on Narrow-Gap IV-VI Semiconductor PbTe(111) Surface

  • Received Date: 30 November 2011
    Available Online: 13 February 2012

    Fund Project: 国家自然科学基金(60506019, 10674118, 10774129)资助项目 (60506019, 10674118, 10774129)

  • Oxidation and thermal desorption mechanism on the PbTe(111) surface were investigated using X-ray photoemission spectroscopy (XPS), scanning tunneling microscopy (STM), and low-energyelectron diffraction (LEED). The initial cleaning of the surface by 500 VAr+ sputtering followed by annealing at 250 °C yielded a perfect (1×1) PbTe(111) surface. XPS measurements showed that PbO2, PbO, and TeO2 were present at the PbTe(111) surface after air exposure for 2 days, and the intensity ratio of Te 3d5/2 and Pb 4f7/2 increased rapidly compared to that of the clean PbTe(111) surface, indicating Te depletion and Pb enrichment of the surface. XPS and STM measurements showed that the thickness of the oxide layer was more than 2 monolayers (MLs). During thermal treatment, the core levels of PbO2 and TeO2 disappeared and the intensity of the O 1s core level decreased, indicating surface decomposition of PbO2 and TeO2, and desorption of oxygen, whereas PbO was still present on the surface after annealing at up to 350 °C.
  • 加载中
    1. [1]

      (1) Chen, Y.; Chen, J. H.; Guo, J. Acta Phys. -Chim. Sin. 2011, 27, 363. [陈晔, 陈建华, 郭进. 物理化学学报, 2011, 27, 363.]

    2. [2]

      (2) Kong, D. S.; Li, L. Acta Phys. -Chim. Sin. 2004, 20, 631. [孔德生, 李亮. 物理化学学报, 2004, 20, 631.]

    3. [3]

      (3) Cao, Y.; Li, A. Z. Acta Phys. -Chim. Sin. 1996, 12, 224. [曹阳, 李爱珍. 物理化学学报, 1996, 12, 224.]

    4. [4]

      (4) Wu, T. F.; Zhang, H. M.;Wang, G. Y.; Hu, H. Y. Acta Phys. Sin. 2011, 60, 631. [吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 物理学报, 2011, 60, 631.]

    5. [5]

      (5) Moré, S.; Tanakab, S.; Tanakaa, S.; Fujii, Y. Surface Science 2003, 527, 41.  

    6. [6]

      (6) Lin, H. Y.;Wu, S. L.; Cheng, C. C.; Ko, C. H.;Wann, C. H.; Lin, Y. R.; Chang, S. J.;Wu, T. B. Appl. Phys. Lett. 2011, 98, 123509.  

    7. [7]

      (7) Gautier, C.; Cambon-Muller, M.; Averous, M. Applied Surface Science 1999, 141, 157.  

    8. [8]

      (8) Neudachina, V. S.; Shatalova, T. B.; Shtanov, V. I.; Yashina, L. V.; Zyubina, T. S.; Tamm, M. E.; Kobeleva, S. P. Surface Science 2005, 584, 77.  

    9. [9]

      (9) Radzy´nski, T.; Lusakowski, A. Acta Phys. Pol. A 2009, 116, 954.

    10. [10]

      (10) Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H. Appl. Phys. Lett. 2011, 99, 121109.  

    11. [11]

      (11) Paul, A.; Klimeck, G. Appl. Phys. Lett. 2011, 98, 212105.  

    12. [12]

      (12) Weng, B. B.; Zhao, F. H.; Ma, J. G.; Yu, G. Z.; Xu, J. A.; Shi, Z. S. Appl. Phys. Lett. 2010, 96, 251911.  

    13. [13]

      (13) Kilian, O.; Allan, G.;Wirtz, L. Phys. Rev. B 2009, 80, 245208.  

    14. [14]

      (14) Zhang, Y.; Ke, X. Z.; Chen, C. F.; Yang, J.; Kent, P. R. C. Phys. Rev. B 2009, 80, 024304.  

    15. [15]

      (15) Brodsky, M. H.; Zemel, J. N. Phys. Rev. 1967, 155, 780.  

    16. [16]

      (16) Parker, E. H. C.;Williams, D. Thin Solid Films 1976, 35, 373.  

    17. [17]

      (17) Chernyashova, I. V.; Andreev, S. I. Applied Surface Science 1997, 108, 225.  

    18. [18]

      (18) Zingg, D. S.; Herlules, D. M. J. Phys. Chem. 1978, 82, 1992.  

    19. [19]

      (19) Dai, G.; Jiang, X.; Zhang, Y. Thin Solid Films 1998, 320, 216.  

    20. [20]

      (20) Bettini, M.; Richter, H. J. Surface Science 1979, 80, 334.  

    21. [21]

      (21) Wu, H. F.; Zhang, H. J.; Lu, Y. H.; Si, J. X.; Li, H. Y.; Bao, S. N.;Wu, H. Z.; He, P. M. Appl. Phys. Lett. 2008, 92, 122112.  

    22. [22]

      (22) Wu, H. F.; Zhang, H. J.; Lu, Y. H.; Xu, T. N.; Si, J. X.; Li, H. Y.; Bao, S. N.;Wu, H. Z.; He, P. M. J. Crystal Growth 2006, 294, 179.  

    23. [23]

      (23) Shalloy, R. B.; Fisher, G. B.; Stiles, P. J. Phys. Rev. B 1977, 5, 1680.

    24. [24]

      (24) Morgan,W. E.; vanWazer, J. R. J. Phys. Chem. 1973, 77, 964.  

    25. [25]

      (25) Kim, K. S.; O?leary, T. J.;Winograd, N. Anal. Chem. 1973, 13, 2214.

    26. [26]

      (26) Kim, K. S.;Winograd, N. Chem. Phys. Lett. 1973, 19, 209.  

    27. [27]

      (27) Yashina, L. V.; Tikhonov, E. V.; Neudachina, V. S. Surf. Interface Anal. 2004, 36, 993.  

    28. [28]

      (28) Northrop, D. A. J. Electrochem. Soc. 1971, 118, 1365.  

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    3. [3]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    6. [6]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    7. [7]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    8. [8]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    16. [16]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    17. [17]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(921)
  • Abstract views(2123)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return