Citation: YANG Wei-Hua, YANG Wu-Tao, LIN Xiao-Yan. Preparation and Characterization of a Novel Bi-Doped PbO2 Electrode[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 831-836. doi: 10.3866/PKU.WHXB201202101 shu

Preparation and Characterization of a Novel Bi-Doped PbO2 Electrode

  • Received Date: 3 January 2012
    Available Online: 10 February 2012

    Fund Project: 国家自然科学基金(21103055) (21103055)华侨大学基本科研业务专项基金(JB-ZR1139)资助项目 (JB-ZR1139)

  • A novel high-performance PbO2 electrode modified with Bi3+ (Bi-PbO2) was prepared by electrodeposition. The microstructure and electrochemical properties of the modified electrode were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), fluorospectrophotometry (FP), Mott-Schottky analysis, electrochemical impedance spectroscopy (EIS), and linear-sweep voltammetry (LSV). The results of SEM, EDS, XPS, XRD, and UV-Vis DRS show that insertion of Bi3+ , which is in the form of Bi2O3, into the PbO2 film can reduce its particle size, change its crystal cell parameters, and narrow its bandgap (Eg). FP analysis reveals that the electrocatalytic activity of the Bi-PbO2 electrode in the degradation of organic materials is higher than that of the PbO2 electrode because more hydroxyl radicals can be generated on its surface. Electrochemical performance tests show that the modified electrode has a more negative flat-band potential (Efb), larger active surface area, lower charge-transfer resistance, and higher oxygen-evolution potential; these characteristics promote the electrocatalytic activity of the Bi-PbO2 electrode in the decomposition of organic materials.
  • 加载中
    1. [1]

      (1) Martínez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324.  

    2. [2]

      (2) Awad, H. S.; Galwa, N. A. Chemosphere 2005, 61, 1327.  

    3. [3]

      (3) Panizza, M.; Cerisola, G. Electrochim. Acta 2003, 48, 3491.  

    4. [4]

      (4) Kokoh, K. B.; Hahn, F.; Belgsir, E. M.; Lamy, C.; Andrade, A. R.; Olivi, P.; Motheo, A. J.; Tremiliosi-Filho, G. Electrochim. Acta 2004, 49, 2077.  

    5. [5]

      (5) Andradea, L. S.; Rocha-Filhoa, R. C.; Bocchia, N.; Biaggioa, S. R.; Iniestab, J.; García-Garciab, V.; Montielb, V. J. Hazard Mater. 2008, 153, 252.  

    6. [6]

      (6) Kong, J.; Shi, S.; Kong, L.; Zhu, X.; Ni, J. Electrochim. Acta 2007, 53, 2048.  

    7. [7]

      (7) Song, Y.;Wei, G.; Xiong, R. Electrochim. Acta 2007, 52, 7022.  

    8. [8]

      (8) Ai, S.; Gao, M.; Zhang,W.;Wang, Q.; Xie, Y.; Jin, L. Talanta 2004, 62, 445.  

    9. [9]

      (9) Velichenko, A. B.; Amadelli, R.; Baranova, E. A. J. Electroanal. Chem. 2002, 527, 56.  

    10. [10]

      (10) Li, G.; Qu, J.; Zhang, X.; Ge, J. Water Res. 2006, 40, 213.  

    11. [11]

      (11) Tong, S.; Ma, C.; Feng, H. Electrochim. Acta 2008, 53, 3002.  

    12. [12]

      (12) Liu, Y.; Liu, H. Electrochim. Acta 2008, 53, 5077.  

    13. [13]

      (13) Anglada, A.; Urtiaga, A.; Ortiz, I. Environ. Sci. Technol. 2009, 43, 2035.  

    14. [14]

      (14) Lindsey, M. E.; Tarr, M. A. Chemosphere 2000, 41, 409.  

    15. [15]

      (15) Lindsey, M. E.; Tarr, M. A. Environ. Sci. Technol. 2000, 34, 444.  

    16. [16]

      (16) Baumanis, C.; Bahnemann, D.W. J. Phys. Chem. C 2008, 112, 19097.

    17. [17]

      (17) Cong, Y.;Wu, Z. J. Phys. Chem. C 2007, 111, 3442.  

    18. [18]

      (18) Yua, N.; Gao, L.; Zhao, S.;Wang, Z. Electrochim. Acta 2009, 54, 3835.  

    19. [19]

      (19) Liu, H.; Liu, Y.; Zhang, C.; Shen, R. J. Appl. Electrochem. 2008, 38, 101.

    20. [20]

      (20) Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K.; J. Power Sources 2008, 181, 46.  

    21. [21]

      (21) El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M. J. Hazard. Mater. 2009, 166, 138.  

    22. [22]

      (22) Li, H.;Wang, D.; Fan, H.;Wang, P.; Jiang, T.; Xie, T. J. Colloid Interface Sci. 2011, 354, 175.  

    23. [23]

      (23) Banerjee, S.; Banerjee, S. Int. J. Eng. Sci. 2011, 3, 2134.

    24. [24]

      (24) Ciríaco, L.; Anjo, C.; Correia, J.; Pacheco, M. J.; Lopes, A. Electrochim. Acta 2009, 54, 1464.  

    25. [25]

      (25) Kong, D.; Lu,W.; Feng, Y.; Bi, S. Prog. Chem. 2009, 21, 1107.

    26. [26]

      (26) Harrington, S. P.; Devine, T. M. J. Electrochem. Soc. 2008, 155, 381.  

    27. [27]

      (27) Cheng, F.; Su, Y.; Liang, J.; Tao, Z. Chem. Mater. 2010, 22, 898.  

    28. [28]

      (28) Song, S.; Zhang, H.; Ma, X.; Shao, Z.; Baker, R. T.; Yi, B. Int . J. Hydrog. Energy 2008, 33, 4955.  

    29. [29]

      (29) Donne, S.W.; Kennedy, J. H. J. Appl. Electrochem. 2004, 34, 159.  

    30. [30]

      (30) Lao, G. H.; Shao, H. B.; Fan, Y. Q.;Wang, J. M.; Zhang, J. Q.; Cao, C. N. Acta Phys. -Chim. Sin. 2011, 27, 627. [劳国洪, 邵海波, 樊玉欠, 王建明, 张鉴清, 曹楚南. 物理化学学报, 2011, 27, 627.]

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    8. [8]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    9. [9]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

Metrics
  • PDF Downloads(778)
  • Abstract views(2326)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return