Citation: XUE Meng-Wei, ZHOU Yu-Ming, ZHANG Yi-Wei, HUANG Li, LIU Xuan, DUAN Yong-Zheng. Effects of Mg Addition on Catalytic Performance of PtNa/Sn-ZSM-5 in Propane Dehydrogenation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 928-934. doi: 10.3866/PKU.WHXB201202073
-
The effects of Mg addition on the catalytic performance of PtNa/Sn-ZSM-5 in propane dehydrogenation was investigated using catalytic reaction performance tests and physicochemical characterizations such as X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), H2 temperature-programmed reduction (H2-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that addition of appropriate amounts of Mg (0.3% and 0.5%, mass fraction) promoted the dispersion of metallic particles and decreased carbon deposition. In these cases, the presence of Mg in the PtMgNa/Sn-ZSM-5 catalyst could inhibit reduction of Sn species, thus more Sn could exist in oxidized states, which is advantageous to the reaction. However, when the content of Mg was excessive, the metallic particles were not well distributed and the particles agglomerated more easily. Moreover, the reduction of Sn species at high temperatures is relatively easy, which is disadvantageous to the reaction. In our experiments, the addition of 0.5% Mg to the PtNa/Sn-ZSM-5 catalyst gave the best catalytic performance. After reaction for 7 h, higher than 95% selectivity toward propene was achieved with a corresponding propane conversion value of 38.7%.
-
Keywords:
-
Mg
, - Sn-ZSM-5,
- Propane dehydrogenation,
- Catalytic performance,
- Catalyst
-
-
-
[1]
(1) Chen, M.; Xu, J.; Cao, Y.; He, H. Y.; Fan, K. N. J. Catal. 2010, 272 (1), 101.
-
[2]
(2) Yu, C. L.; Xu, H. Y.; Chen, X. R.; Ge, Q. J.; Li,W. Z. J. Fuel. Chem. Technol. 2010, 38 (3), 308.
-
[3]
(3) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P. C. Ind. Eng. Chem. Res. 2006, 45, 2213.
-
[4]
(4) Liu, H.; Zhou, Y. M.; Zhang, Y.W.; Bai, L. Y.; Tang, M. H. Ind. Eng. Chem. Res. 2009, 48 (12), 5598.
-
[5]
(5) Duan, Y. Z.; Zhou, Y. M.; Zhang, Y.W.; Sheng, X. L.; Xue, M. W. Catal. Lett. 2011, 141 (1), 120.
-
[6]
(6) Pisduangdaw, S.; Panpranot, J.; Methastidsook, C.; Chaisuk, C.; Faungnawakij, K.; Praserthdam, P.; Mekasuwandumrong, O. Appl. Catal. A: Gen. 2009, 370, 1.
-
[7]
(7) Praserthdam, P.; Grisdanurak, N.; Yuangsawatdikul,W. Chem. Eng. J. 2000, 77, 215.
-
[8]
(8) Yu, C. L.; Ge, Q. J.; Xu, H. Y.; Li,W. Z. Appl. Catal A: Gen. 2006, 315, 58.
-
[9]
(9) Zhang, Y.W.; Zhou, Y. M.; Liu, H.;Wang, Y.; Xu, Y.;Wu, P. C. Appl. Catal. A: Gen. 2007, 333 (2), 202.
-
[10]
(10) Lobera, M. P.; Tellez, C.; Herguido, J.; Schuurman, Y.; Menendez, M. Chem. Eng. J. 2011, 171 (3), 1317.
-
[11]
(11) Siddiqi, G.; Sun, P. P.; Galvita, V.; Bell, A. T. J. Catal. 2010, 274, 200.
-
[12]
(12) Zhang, S. B.; Zhou, Y. M.; Zhang, Y.W.; Huang, L. Catal. Lett. 2010, 135, 76.
-
[13]
(13) Bai, L. Y.; Zhou, Y. M.; Zhang, Y.W.; Liu, H.; Tang, M. H. Catal. Lett. 2009, 129, 449.
-
[14]
(14) Kumar, M. S.; Chen, D. Microporous Mesoporous Mat. 2009, 126, 152.
-
[15]
(15) Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Appl.Catal. A: Gen. 2008, 351, 16.
-
[16]
(16) Barros, I. C. L.; Braga, V. S.; Pinto, D. S.; Macedo, J. L.; Filho, G. N. R.; Dias, J. A.; Dias, S. C. L. Microporous Mesoporous Mat. 2008, 109, 485.
-
[17]
(17) Zhang, Y.W.; Zhou, Y. M.; Huang, L.; Xue, M.W.; Zhang, S. B. Ind. Eng. Chem. Res. 2011, 50 (13), 7896.
-
[18]
(18) Bai, L. Y.; Zhou, Y. M.; Zhang, Y.W.; Liu, H.; Sheng, X. L. Ind. Eng. Chem. Res. 2009, 48 (22), 9885.
-
[19]
(19) de Graaf, E. A.; Kooyman, P. J.; Andreini, A.; Bliek, A. Appl. Catal. A: Gen. 2005, 278, 187.
-
[20]
(20) Kumar, M. S.; Chen, D.; Holmen, A.;Walmsley, J. C. Catal. Today 2009, 142, 17.
-
[21]
(21) Lobree, I. J.; Hwang, I. C.; Reimer, J. A.; Bell, A. T. J. Catal. 1999, 186, 242.
-
[22]
(22) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu. P. C. Acta Phys. -Chim. Sin. 2006, 22 (6), 672. [张一卫, 周钰明, 邱安定, 王玉, 许艺, 吴沛成. 物理化学学报, 2006, 22 (6), 672.]
-
[23]
(23) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P. C. Catal. Commun. 2006, 7 (11), 860.
-
[24]
(24) Yu, C. L.; Xu, H. Y.; Ge, Q. J.; Li,W. Z. J. Mol. Catal. A: Chem. 2007, 266 (1-2), 80.
-
[25]
(25) Yang,W. S.;Wu, R. A.; Lin, L.W. Petrochem. Technol. 1992, 8, 511. [杨维慎, 吴荣安, 林励吾. 石油化工, 1992, 8, 511.]
-
[26]
(26) Zhang, Y.W.; Zhou, Y. M.;Wan, L. H.; Xue, M.W.; Duan, Y. Z.; Liu, X. Fuel. Process. Technol. 2011, 92 (8), 1632.
-
[27]
(27) Afonso, J. C.; Schmal, M.; Frety, R. Fuel. Process. Technol. 1994, 41 (1), 13.
-
[1]
-
-
[1]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[2]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[5]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[6]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[9]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[10]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[11]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[12]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[13]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[14]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[17]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[18]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[19]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[20]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[1]
Metrics
- PDF Downloads(862)
- Abstract views(3229)
- HTML views(6)