Citation:
ZHAO Hui-Min, LIN Dan, YANG Gang, CHUN Yuan, XU Qin-Hua. Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes[J]. Acta Physico-Chimica Sinica,
;2012, 28(04): 985-992.
doi:
10.3866/PKU.WHXB201202071
-
Mesoporous silica SBA-15-like materials with large pores were synthesized using tri-block copolymer P123 as a structure-directing agent, tetramethoxysilane as the silicon source, and different organic solvents as swelling agents. The resulting materials were characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results showed that the introduction of swelling agents effectively enlarged the pore diameter and pore volume of the SBA-15 materials, and pore swelling with isooctane was larger than that with CCl4. When modified with tetraethylenepentamine (TEPA), all of these composite materials exhibited excellent adsorption capacities for CO2. The adsorption capacity of CO2 was independent of the pore structure, if the template was removed before modification with TEPA. By contrast, the adsorption capacity increased with the pore diameter when the as-synthesized mesoporous material was modified with TEPA. The effects of temperature and pressure on the CO2 adsorption capacity were investigated using adsorption isotherms and CO2 temperature-programmed desorption (TPD). With CO2 adsorption at higher temperature, the composite materials showed different adsorption capacities with pressure variation. As a result, the adsorption and separation of CO2 on these TEPA modified mesoporous materials in ambient air flow can be realized via pressure swing adsorption.
-
-
-
[1]
(1) Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science 2010, 330, 356.
-
[2]
(2) Melillo, J. M.; Mcguire, A. D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C. J.; Schloss, A. L. Nature 1993, 363, 234.
-
[3]
(3) Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
-
[4]
(4) Kim, J.; Yang, S. T.; Choi, S. B.; Sim, J.; Kim, J.; Ahn,W. S. J. Mater. Chem. 2011, 21, 3070.
- [5]
-
[6]
(6) Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Ind. Eng. Chem. Res. 1999, 38, 3917.
-
[7]
(7) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy Fuels 2002, 16, 1463.
-
[8]
(8) Xu, X.; Song, C.; Miller, B. G.; Scaroni, A.W. Ind. Eng. Chem. Res. 2005, 44, 8113.
-
[9]
(9) Liu, Y. M.; Shi, J. J.; Chen, J.; Ye, Q.; Pan, H.; Shao, Z. H.; Shi, Y. Microporous Mesoporous Mat. 2010, 134, 16.
-
[10]
(10) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.
-
[11]
(11) Peter, J. E.; Harlick, Abdelhamid, S. Ind. Eng. Chem. Res. 2006, 45, 3248.
-
[12]
(12) Sayari, A.; Belmabkhout, Y. J. Am. Chem. Soc. 2010, 132, 6312.
-
[13]
(13) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys. -Chim. Sin. 2007, 23, 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23, 801.]
-
[14]
(14) Chen, C.; Yang, S. T.; Ahn,W. S.; Ryoo, R. Chem. Commun. 2009, 3627.
-
[15]
(15) Qi, G.;Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A. A.; Li,W.; Jones, C.W.; Giannelis, E. P. Environ. Sci. Technol. 2011, 4, 444.
-
[16]
(16) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Adv. Funct. Mater. 2006, 16, 1717.
-
[17]
(17) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Y.;Wang, Z. J.; Zhu, J. H. Chem. Eur. J. 2008, 14, 3442.
-
[18]
(18) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous Mesoporous Mat. 2008, 114, 74.
-
[19]
(19) Wen, J. J.; Gu, F. N.;Wei, F.; Zhou, Y.; Lin,W. G.; Yang, J.; Yang, J. Y.;Wang, Y.; Zou, Z. G.; Zhu, J. H. J. Mater. Chem. 2010, 20, 2840.
-
[20]
(20) Ma, L.; Han, K. K.; Ding, X. H.; Chun, Y.; Zhu, J. H. J. Nanosci. Nanotechnol. 2011, 11, 4079.
-
[21]
(21) Beck, J. S.; Vartuli, J. C.; Roth,W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.W.; Olson, D. H.; Sheppard, E.W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
-
[22]
(22) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
-
[23]
(23) Liu, J.; Li, C.; Yang, Q.; Yang, J.; Li, C. Langmuir 2007, 23, 7255.
-
[24]
(24) Sun, R. Q.; Zhou, X.; Sun, L. B.;Wu, H.; Chun, Y.; Xu, Q. H. Chem. J. Chin. Univ. 2007, 28, 2333. [孙瑞琴, 周徐, 孙林兵, 吴昊, 淳远, 须沁华. 高等学校化学学报, 2007, 28, 2333.]
-
[25]
(25) Hiyoshi, N.; Yo , K.; Yashima, T. Microporous Mesoporous Mat. 2005, 84, 357.
-
[26]
(26) Yan, X.; Zhang, L.; Zhang, Y.; Yang, G.; Yan, Z. Ind. Eng. Chem. Res. 2011, 50, 3220.
-
[27]
(27) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. J. Chem. Eng. Data 2004, 49, 1095.
-
[1]
-
-
-
[1]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[2]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[3]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[4]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[9]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[12]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[13]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[14]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[15]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[16]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[17]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[18]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[19]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[20]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[1]
Metrics
- PDF Downloads(1103)
- Abstract views(2577)
- HTML views(29)