Citation: ZHAO Hui-Min, LIN Dan, YANG Gang, CHUN Yuan, XU Qin-Hua. Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 985-992. doi: 10.3866/PKU.WHXB201202071 shu

Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes

  • Received Date: 1 September 2011
    Available Online: 7 February 2012

    Fund Project: 国家高技术研究发展计划项目(863) (2008AA06Z327) (863) (2008AA06Z327) 中央高校基础研究基金(1116020503) (1116020503)南京大学开放测试基金(0205001330)资助 (0205001330)

  • Mesoporous silica SBA-15-like materials with large pores were synthesized using tri-block copolymer P123 as a structure-directing agent, tetramethoxysilane as the silicon source, and different organic solvents as swelling agents. The resulting materials were characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results showed that the introduction of swelling agents effectively enlarged the pore diameter and pore volume of the SBA-15 materials, and pore swelling with isooctane was larger than that with CCl4. When modified with tetraethylenepentamine (TEPA), all of these composite materials exhibited excellent adsorption capacities for CO2. The adsorption capacity of CO2 was independent of the pore structure, if the template was removed before modification with TEPA. By contrast, the adsorption capacity increased with the pore diameter when the as-synthesized mesoporous material was modified with TEPA. The effects of temperature and pressure on the CO2 adsorption capacity were investigated using adsorption isotherms and CO2 temperature-programmed desorption (TPD). With CO2 adsorption at higher temperature, the composite materials showed different adsorption capacities with pressure variation. As a result, the adsorption and separation of CO2 on these TEPA modified mesoporous materials in ambient air flow can be realized via pressure swing adsorption.
  • 加载中
    1. [1]

      (1) Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science 2010, 330, 356.  

    2. [2]

      (2) Melillo, J. M.; Mcguire, A. D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C. J.; Schloss, A. L. Nature 1993, 363, 234.  

    3. [3]

      (3) Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.  

    4. [4]

      (4) Kim, J.; Yang, S. T.; Choi, S. B.; Sim, J.; Kim, J.; Ahn,W. S. J. Mater. Chem. 2011, 21, 3070.  

    5. [5]

      (5) An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578.  

    6. [6]

      (6) Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Ind. Eng. Chem. Res. 1999, 38, 3917.  

    7. [7]

      (7) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy Fuels 2002, 16, 1463.  

    8. [8]

      (8) Xu, X.; Song, C.; Miller, B. G.; Scaroni, A.W. Ind. Eng. Chem. Res. 2005, 44, 8113.  

    9. [9]

      (9) Liu, Y. M.; Shi, J. J.; Chen, J.; Ye, Q.; Pan, H.; Shao, Z. H.; Shi, Y. Microporous Mesoporous Mat. 2010, 134, 16.  

    10. [10]

      (10) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  

    11. [11]

      (11) Peter, J. E.; Harlick, Abdelhamid, S. Ind. Eng. Chem. Res. 2006, 45, 3248.  

    12. [12]

      (12) Sayari, A.; Belmabkhout, Y. J. Am. Chem. Soc. 2010, 132, 6312.  

    13. [13]

      (13) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys. -Chim. Sin. 2007, 23, 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23, 801.]  

    14. [14]

      (14) Chen, C.; Yang, S. T.; Ahn,W. S.; Ryoo, R. Chem. Commun. 2009, 3627.

    15. [15]

      (15) Qi, G.;Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A. A.; Li,W.; Jones, C.W.; Giannelis, E. P. Environ. Sci. Technol. 2011, 4, 444.

    16. [16]

      (16) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Adv. Funct. Mater. 2006, 16, 1717.  

    17. [17]

      (17) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Y.;Wang, Z. J.; Zhu, J. H. Chem. Eur. J. 2008, 14, 3442.  

    18. [18]

      (18) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous Mesoporous Mat. 2008, 114, 74.  

    19. [19]

      (19) Wen, J. J.; Gu, F. N.;Wei, F.; Zhou, Y.; Lin,W. G.; Yang, J.; Yang, J. Y.;Wang, Y.; Zou, Z. G.; Zhu, J. H. J. Mater. Chem. 2010, 20, 2840.  

    20. [20]

      (20) Ma, L.; Han, K. K.; Ding, X. H.; Chun, Y.; Zhu, J. H. J. Nanosci. Nanotechnol. 2011, 11, 4079.  

    21. [21]

      (21) Beck, J. S.; Vartuli, J. C.; Roth,W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.W.; Olson, D. H.; Sheppard, E.W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.  

    22. [22]

      (22) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  

    23. [23]

      (23) Liu, J.; Li, C.; Yang, Q.; Yang, J.; Li, C. Langmuir 2007, 23, 7255.  

    24. [24]

      (24) Sun, R. Q.; Zhou, X.; Sun, L. B.;Wu, H.; Chun, Y.; Xu, Q. H. Chem. J. Chin. Univ. 2007, 28, 2333. [孙瑞琴, 周徐, 孙林兵, 吴昊, 淳远, 须沁华. 高等学校化学学报, 2007, 28, 2333.]

    25. [25]

      (25) Hiyoshi, N.; Yo , K.; Yashima, T. Microporous Mesoporous Mat. 2005, 84, 357.  

    26. [26]

      (26) Yan, X.; Zhang, L.; Zhang, Y.; Yang, G.; Yan, Z. Ind. Eng. Chem. Res. 2011, 50, 3220.  

    27. [27]

      (27) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. J. Chem. Eng. Data 2004, 49, 1095.  

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(1103)
  • Abstract views(2577)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return