Citation: YANG Fan, LIU Ying-Liang, WANG Jian-Ping. Mid-Infrared Pump-Probe Spectroscopy of Dimeric π-Cyclopentadienyl-dicarbonyliron [CpFe(CO)2]2[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 759-765. doi: 10.3866/PKU.WHXB201202023 shu

Mid-Infrared Pump-Probe Spectroscopy of Dimeric π-Cyclopentadienyl-dicarbonyliron [CpFe(CO)2]2

  • Received Date: 11 November 2011
    Available Online: 2 February 2012

    Fund Project: 国家自然科学基金(20727001) (20727001) 中国科学院知识创新工程(KJCX2-EW-H01) (KJCX2-EW-H01)

  • The structural and vibrational dynamics of the non-bridged C≡O stretching vibrations of two different tautomers of dimeric π-cyclopentadienyldicarbonyliron [CpFe(CO)2]2 in CH2Cl2 were examined using steady-state and femtosecond infrared pump-probe methods at 5-μm wavelength. The two main species in [CpFe(CO)2]2 had a cis:trans molar ratio of 1.7, and showed different vibrational and rotational relaxation dynamics. Both species showed biexponential decay in their two C≡O stretching vibrational excited-state populations, with a fast component (<1 ps) and a slow component (20 ps). The former was believed to be related to the rapid dephasing processes of the coherent state caused by broadband excitation, while the latter was the typical lifetime for the C≡O stretching vibrational excited state. Having a significant permanent dipole, the cis structure could interact strongly with solvent, resulting in relatively slower rotational dynamics. Our work demonstrated that the frequency and vibrational-rotational dynamics of the non-bridged C≡O stretching vibrations were very sensitive to both molecular structures and the solvent.
  • 加载中
    1. [1]

      (1) Cotton, F. A.; Stammreich, H.;Wilkinson, G. J. Inorg. Nucl. Chem. 1959, 9, 3.  

    2. [2]

      (2) Noack, K. J. Inorg. Nucl. Chem. 1963, 25, 1383.  

    3. [3]

      (3) Bryan, R. F.; Greene, P. T.; Newlands, M. J.; Field, D. S. J. Chem. Soc. A 1970, 3068.

    4. [4]

      (4) Bullitt, J. G.; Cotton, F. A.; Marks, T. J. Inorg. Chem. 1972, 11, 671.  

    5. [5]

      (5) Cotton, F. A.; Yagupsky, G. Inorg. Chem. 1967, 6, 15.  

    6. [6]

      (6) Mills, O. Acta Crystallogr. 1958, 11, 620.  

    7. [7]

      (7) Kessler, H. Angew. Chem. Int. Edt. 1970, 9, 219.  

    8. [8]

      (8) Bryan, R. F.; Greene, P. T.; Field, D. S.; Newlands, M. J. J. Chem. Soc. D: Chem. Commun. 1969, 1477.  

    9. [9]

      (9) Bullitt, J. G.; Cotton, F. A.; Marks, T. J. J. Am. Chem. Soc. 1970, 92, 2155.  

    10. [10]

      (10) Anna, J. M.; King, J. T.; Kubarych, K. J. Inorg. Chem. 2011, 50, 9273.

    11. [11]

      (11) Thomas E, B. Coord. Chem. Rev. 2000, 206-207, 419.  

    12. [12]

      (12) George, M.W.; Dougherty, T. P.; Heilweil, E. J. J. Phys. Chem. 1996, 100, 201.  

    13. [13]

      (13) Zhang, S.; Brown, T. L. J. Am. Chem. Soc. 1993, 115, 1779.  

    14. [14]

      (14) Anfinrud, P. A.; Han, C. H.; Lian, T.; Hochstrasser, R. M. J. Phys. Chem. 1991, 95, 574.  

    15. [15]

      (15) Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. J. Am. Chem. Soc. 1989, 111, 4563.  

    16. [16]

      (16) Moore, B. D.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, 1819.  

    17. [17]

      (17) Dixon, A. J.; Healy, M. A.; Poliakoff, M.; Turner, J. J. J. Chem. Soc. Chem. Commun. 1986, 994.

    18. [18]

      (18) Hooker, R. H.; Mahmoud, K. A.; Rest, A. J. J. Chem. Soc. Chem. Commun. 1983, 1022.

    19. [19]

      (19) Abrahamson, H. B.; Palazzotto, M. C.; Reichel, C. L.;Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 4123.  

    20. [20]

      (20) Tyler, D. R.; Schmidt, M. A.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 6018.  

    21. [21]

      (21) Zanni, M. T.; Gnanakaran, S.; Stenger, J.; Hochstrasser, R. M. J. Phys. Chem. B 2001, 105, 6520.  

    22. [22]

      (22) Khalil, M.; Demirdöven, N.; Tokmakoff, A. J. Phys. Chem. A 2003, 107, 5258.  

    23. [23]

      (23) Wang, J.; Chen, J.; Hochstrasser, R. M. J. Phys. Chem. B 2006, 110, 7545.  

    24. [24]

      (24) Wang. J. Chin. Sci .Bull. 2007, 52, 1221. [王建平. 科学通报 2007, 52, 1221.]

    25. [25]

      (25) Zheng. J. R. Physics 2010, 39, 162. [郑俊荣. 物理2010, 39, 162.]

    26. [26]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.05; Gaussian, Inc., Pittsburgh PA, 2003.

    27. [27]

      (27) McArdle, P. A.; Manning, A. R. J. Chem. Soc. A 1969, 1498.

    28. [28]

      (28) McArdle, P.; Manning, A. R. J. Chem. Soc. A 1970, 2128.

    29. [29]

      (29) lonzka, O.; Khalil, M.; Demirdöven, N.; Tokmakoff, A. Phys. Rev. Lett. 2001, 86, 2154.  

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    16. [16]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    17. [17]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(789)
  • Abstract views(2159)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return